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Abstract

The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and
extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for
optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliabil-
ity, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitiv-
ity/variance analysis with design of experiments and parameter study methods. These capabilities may be used
on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer
nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement
abstractions of the key components required for iterative systems analyses, the Dakota toolkit provides a flexible
and extensible problem-solving environment for design and performance analysis of computational models on
high performance computers.

This report serves as a user’s manual for the Dakota software and provides capability overviews and procedures
for software execution, as well as a variety of example studies.
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Preface

The Dakota (Design Analysis Kit for Optimization and Terascale Applications) project started in 1994 as an inter-
nal research and development activity at Sandia National Laboratories in Albuquerque, New Mexico. The original
goal was to provide a common set of optimization tools for a group of engineers solving structural analysis and
design problems. Prior to the Dakota project, there was no focused effort to archive optimization methods for
reuse on other projects. Thus, engineers found themselves repeatedly building new custom interfaces between
the engineering analysis software and optimization software. This was especially burdensome when using par-
allel computing, as each project developed a unique master program to coordinate concurrent simulations on a
network of workstations or a parallel computer. The initial Dakota toolkit provided the engineering and analysis
community at Sandia access to a variety of optimization algorithms, hiding the complexity of the optimization
software interfaces from the users. Engineers could readily switch between optimization software packages by
simply changing a few lines in a Dakota input file. In addition to structural analysis, Dakota has been applied
to computational fluid dynamics, nonlinear dynamics, shock physics, heat transfer, electrical circuits, and many
other science and engineering models.

Dakota has grown significantly beyond an optimization toolkit. In addition to its state-of-the-art optimization
methods, Dakota includes methods for global sensitivity and variance analysis, parameter estimation, uncertainty
quantification, and verification, as well as meta-level strategies for surrogate-based optimization, hybrid optimiza-
tion, and optimization under uncertainty. Available to all these algorithms is parallel computation support; ranging
from desktop multiprocessor computers to massively parallel computers typically found at national laboratories
and supercomputer centers.

As of Version 5.0, Dakota is publicly released as open source under a GNU Lesser General Public License and
is available for free download world-wide. See http://www.gnu.org/licenses/lgpl.html for more
information on the LGPL software use agreement. Dakota Versions 3.0 through 4.2+ were licensed under the GNU
General Public License. Dakota public release facilitates research and software collaborations among Dakota
developers at Sandia National Laboratories and other institutions, including academic, government, and corporate
entities. See the Dakota FAQ at http://dakota.sandia.gov/faqg.html for more information on the
public release rationale and ways to contribute.

Dakota leadership includes Brian Adams (project lead), Mike Eldred (founder and research lead), Dena Vigil
(support manager), and Jim Stewart (business manager). For a listing of current and former contributors and
third-party library developers, visit the Dakota webpage at http://dakota.sandia.gov.

Contact Information:

Brian M. Adams, Dakota Project Lead

Sandia National Laboratories

P.O. Box 5800, Mail Stop 1318

Albuquerque, NM 87185-1318

Web (including support information): http://dakota.sandia.gov


http://www.gnu.org/licenses/lgpl.html
http://dakota.sandia.gov/faq.html
http://dakota.sandia.gov
http://dakota.sandia.gov
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Chapter 1

Introduction

1.1 Motivation for Dakota Development

Computational models are commonly used in engineering design and scientific discovery activities for simulating
complex physical systems in disciplines such as fluid mechanics, structural dynamics, heat transfer, nonlinear
structural mechanics, shock physics, and many others. These simulators can be an enormous aid to engineers who
want to develop an understanding and/or predictive capability for complex behaviors typically observed in the
corresponding physical systems. Simulators often serve as virtual prototypes, where a set of predefined system
parameters, such as size or location dimensions and material properties, are adjusted to improve the performance
of a system, as defined by one or more system performance objectives. Such optimization or tuning of the
virtual prototype requires executing the simulator, evaluating performance objective(s), and adjusting the system
parameters in an iterative, automated, and directed way. System performance objectives can be formulated, for
example, to minimize weight, cost, or defects; to limit a critical temperature, stress, or vibration response; or
to maximize performance, reliability, throughput, agility, or design robustness. In addition, one would often
like to design computer experiments, run parameter studies, or perform uncertainty quantification (UQ). These
approaches reveal how system performance changes as a design or uncertain input variable changes. Sampling
strategies are often used in uncertainty quantification to calculate a distribution on system performance measures,
and to understand which uncertain inputs contribute most to the variance of the outputs.

A primary goal for Dakota development is to provide engineers and other disciplinary scientists with a systematic
and rapid means to obtain improved or optimal designs or understand sensitivity or uncertainty using simulation-
based models. These capabilities generally lead to improved designs and system performance in earlier design
stages, alleviating dependence on physical prototypes and testing, shortening design cycles, and reducing product
development costs. In addition to providing this practical environment for answering system performance ques-
tions, the Dakota toolkit provides an extensible platform for the research and rapid prototyping of customized
methods and strategies [24].

1.2 Dakota Capabilities

Dakota delivers a variety of iterative methods and strategies, and the ability to flexibly interface them to your
simulation code. While Dakota was originally conceived to more readily interface simulation codes and opti-
mization algorithms, recent versions go beyond optimization to include other iterative analysis methods such
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as uncertainty quantification with nondeterministic propagation methods, parameter estimation with nonlinear
least squares solution methods, and sensitivity/variance analysis with general-purpose design of experiments and
parameter study capabilities. These capabilities may be used on their own or as building blocks within more so-
phisticated strategies such as hybrid optimization, surrogate-based optimization, optimization under uncertainty,
or mixed aleatory/epistemic UQ.

The principal classes of Dakota algorithms, with brief descriptions, are summarized here. For details, formula-
tions, and usage guidelines, see the referenced chapters.

e Parameter Studies (Chapter 3): Parameter studies employ deterministic designs to explore the effect of
parametric changes within simulation models, yielding one form of sensitivity analysis. They can help
assess simulation characteristics such as smoothness, multi-modality, robustness, and nonlinearity, which
affect the choice of algorithms and controls in follow-on optimization and UQ studies. Typical examples
include centered, one-at-a-time variations or joint variation on a grid.

e Design of Experiments (Chapter 4): Design and analysis of computer experiments (DACE) techniques
are often used to explore the parameter space of an engineering design problem, for example to perform
global sensitivity analysis. DACE methods can help reach conclusions similar to parameter studies, but the
primary goal of these methods is to generate good coverage of the input parameter space. Representative
methods include Latin hypercube sampling, orthogonal arrays, and Box-Behnken designs.

e Uncertainty Quantification (Chapter 5): Uncertainty quantification methods (also referred to as nonde-
terministic analysis methods) compute probabilistic information about response functions based on simu-
lations performed according to specified input parameter probability distributions. Put another way, these
methods perform a forward uncertainty propagation in which probability information for input parameters
is mapped to probability information for output response functions. Common approaches include Monte
Carlo sampling, reliability methods, and polynomial chaos expansions.

e Optimization (Chapter 6): Optimization solvers seek to minimize cost or maximize system performance,
as predicted by the simulation model, subject to constraints on input variables or secondary simulation re-
sponses. Categories of algorithms include gradient-based, derivative-free, and global optimization. Dakota
also includes capabilities for multi-objective trade-off optimization and automatic scaling of problem for-
mulations. Advanced Dakota approaches include hybrid (multi-method), multi-start local, and Pareto-set
optimization.

e Calibration (Chapter 7): Calibration algorithms seek to maximize agreement between simulation outputs
and experimental data (or desired outputs). They are used solve inverse problems (often referred to as
parameter estimation or least-squares problems). Dakota approaches include nonlinear least squares and
Bayesian calibration.

Dakota includes a number of related advanced capabilities. Surrogate models are inexpensive approximate mod-
els that are intended to capture the salient features of an expensive high-fidelity model and include data fits,
multifidelity, and reduced-order model surrogates. They can be used to explore the variations in response quanti-
ties over regions of the parameter space, or they can serve as inexpensive stand-ins for optimization or uncertainty
quantification studies. Section 9.4 summarizes surrogate model mechanics in Dakota, while optimization methods
tailored to particular surrogate approaches are surveyed in Chapter 8.

Nested models permit layering one Dakota method over another, enabling algorithms like mixed epistemic-
aleatory or second-order UQ, optimization under uncertainty, or surrogate-based UQ. Additional information
on these nested approaches is provided in Section 9.5 and Chapter 16.

The methods and strategies in Dakota are designed to exploit parallel computing resources such as those found
in a desktop multiprocessor workstation, a network of workstations, or a massively parallel computing platform.
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Figure 1.1: The loosely-coupled or “black-box” interface between Dakota and a user-supplied simulation code.

This parallel computing capability is a critical technology for rendering real-world engineering design problems
computationally tractable. See Chapter 18.

Dakota also has emerging capabilities in solution verification and Bayesian calibration/UQ, which are documented
briefly in the Dakota Reference Manual, and in later sections of this manual.

1.3 Coupling Dakota to a Simulation

A key Dakota advantage is access to a broad range of iterative capabilities through a single, relatively simple,
interface between Dakota and your simulator. Trying a different iterative method or strategy typically requires
changing only a few commands in the Dakota text input file, and starting the new analysis. It does not require
intimate knowledge of the underlying software package integrated in Dakota, with its unique command syntax and
interfacing requirements. In addition, Dakota will manage concurrent executions of your computational model in
parallel, whether on a desktop or high-performance cluster computer.

Figure 1.1 depicts a typical loosely-coupled relationship between Dakota and the simulation code(s). Such cou-
pling is often referred to as “black-box,” as Dakota has no (or little) awareness of the internal details of the
computational model, obviating any need for its source code. Such loose coupling is the simplest and most com-
mon interfacing approach Dakota users employ. Dakota and the simulation code exchange data by reading and
writing short data files. Dakota is executed with commands that the user supplies in a text input file (not shown
in Figure 1.1) which specify the type of analysis to be performed (e.g., parameter study, optimization, uncer-
tainty quantification, etc.), along with the file names associated with the user’s simulation code. During operation,
Dakota automatically executes the user’s simulation code by creating a separate process external to Dakota.

The solid lines in Figure 1.1 denote file input/output (I/O) operations inherent to Dakota or the user’s simulation
code. The dotted lines indicate passing or conversion of information that must be implemented by the user.
As Dakota runs, it writes out a parameters file containing the current variable values. Dakota then starts the
user’s simulation code (or, often, a short driver script wrapping it), and when the simulation completes, reads the
response data from a results file. This process is repeated until all of the simulation code runs required by the
iterative study are complete.

In some cases it is advantageous to have a close coupling between Dakota and the simulation code. This close
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coupling is an advanced feature of Dakota and is accomplished through either a direct interface or a SAND (si-
multaneous analysis and design) interface. For the direct interface, the user’s simulation code is modified to
behave as a function or subroutine under Dakota. This interface can be considered to be “semi-intrusive” in that
it requires relatively minor modifications to the simulation code. Its major advantage is the elimination of the
overhead resulting from file I/O and process creation. It can also be a useful tool for parallel processing, by en-
capsulating all computation in a single executable. For details on direct interfacing, see Section 17.2. A SAND
interface approach is “fully intrusive” in that it requires further modifications to the simulation code so that an
optimizer has access to the internal residual vector and Jacobian matrices computed by the simulation code. In
a SAND approach, both the optimization method and a nonlinear simulation code are converged simultaneously.
While this approach can greatly reduce the computational expense of optimization, considerable software devel-
opment effort must be expended to achieve this intrusive coupling between SAND optimization methods and the
simulation code. SAND may be supported in future Dakota releases.

1.4 User’s Manual Organization

The Dakota User’s Manual is organized into the following major categories. New users should consult the Tutorial
to get started, then likely the Method Tour and Interfacing to select a Dakota method and build an interface to
your code.

e Tutorial (Chapter 2): How to obtain, install, and use Dakota, with a few introductory examples.

e Method Tour (Chapters 3 through 8): Survey of the major classes of iterative methods included in Dakota,
with background, mathematical formulations, usage guidelines, and summary of supporting third-party
software.

e Models (Chapters 9 through 12): Explanation of Dakota models, which manage the mapping from variables
through interfaces to responses, as well as details on parameter and response file formats for simulation code
interfacing.

e Input/Output (Chapters 13 and 14): Summary of input to Dakota, including tabular data, and outputs
generated by Dakota.

e Advanced Topics:

Control of Dakota Iteration: Chapter 15 addresses strategies and Chapter 16, model recursions.

Interfacing: Chapter 17 describes interfacing Dakota with engineering simulation codes in both
loose- and tightly-coupled modes.

Parallelism: Chapter 18 described Dakota’s parallel computing capabilities, with a summary of major
application parallel modes in Section 18.7.

Fault Tolerance: Chapter 19 describes restart capabilities and utilities and Chapter 20 explains ways
to detect and mitigate simulation failures.

e Additional Examples (Chapter 21): Supplemental example analysis problems and discussion.

1.5 Files Referenced in this Manual

Dakota input files are shown in figures throughout the Manual. The filename is specified in the comments and un-
less specified otherwise, these files are available in the Dakota/examples/users directory, where Dakota
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refers to the directory where Dakota was installed. Some of the input files have associated files, such as output or
tabular data, with the same base filename, and . sav appended to the names.

Additional files are referenced, and if the location differs then it will be specified in the text. A small number of
examples refer to files included only in the source directory, which is labeled Dakota_Source. You will need a
copy of the source to view these files - see Section 2.1.1.

1.6 Summary

Dakota is both a production tool for engineering design and analysis activities and a research tool for the develop-
ment of new algorithms in optimization, uncertainty quantification, and related areas. Because of the extensible,
object-oriented design of Dakota, it is relatively easy to add new iterative algorithms, strategies, simulation in-
terfacing approaches, surface fitting methods, etc. In addition, Dakota can serve as a rapid prototyping tool for
algorithm development. That is, by having a broad range of building blocks available (i.e., parallel computing,
surrogate models, simulation interfaces, fundamental algorithms, etc.), new capabilities can be assembled rapidly
which leverage the previous software investments. For additional discussion on framework extensibility, refer to
the Dakota Developers Manual [2].

The capabilities of Dakota have been used to solve engineering design and optimization problems at Sandia Labs,
at other Department of Energy labs, and by our industrial and academic collaborators. Often, this real-world
experience has provided motivation for research into new areas of optimization. The Dakota development team
welcomes feedback on the capabilities of this software toolkit, as well as suggestions for new areas of research.
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Chapter 2

Dakota Tutorial

2.1 Quickstart

This section provides an overview of acquiring and installing Dakota, running a simple example, and looking
at the basic output available. More detailed information about downloads and installation can be found on the
Dakota website http://dakota.sandia.gov.

2.1.1 Acquiring and Installing Dakota

Dakota operates on most systems running Unix or Linux operating systems as well as on Windows with the help
of a Cygwin emulation layer. Dakota is developed and most extensively tested on Redhat Enterprise Linux with
GNU compilers, but additional operating systems / compiler combinations are tested nightly as well. See the
Dakota website for more information on supported platforms for particular Dakota versions.

Department of Energy users: Dakota may already be available on your target system. Sandia users should visit
http://dakota.sandia.gov/sandia_only/ for information on supported Dakota installations on en-
gineering networks and cluster computers, as well as for Sandia-specific downloads. At other DOE institutions,
contact your system administrator about Dakota availability. If not available for your target platform, you may
still download Dakota as described below.

Getting started with Dakota typically involves the following steps:

1. Download Dakota.
You may download binary executables for your preferred platforms or you can compile Dakota from source
code. Downloads are available from http://dakota.sandia.gov/download.html.

2. Install Dakota.
Instructions are available from http://dakota.sandia.gov/install.html. Guidance is also
included in the Dakota source files, including Dakota_Source/INSTALL. Further platform/operating
system-specific guidance can be found in Dakota_Source/examples/platforms.

3. Verify that Dakota runs.
To perform a quick check that your Dakota executable runs, open a terminal window (in Windows, cmd.exe),
and type:


http://dakota.sandia.gov
http://dakota.sandia.gov/sandia_only/
http://dakota.sandia.gov/download.html
http://dakota.sandia.gov/install.html
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dakota -v
Dakota version infomation should display in your terminal window. For a more detailed description of
Dakota command line options, see Section 2.4.

4. Participate in Dakota user communities.
Join Dakota mail lists to get the most up-to-date guidance for downloading, compiling, installing, or run-
ning. For information about mail lists, getting help, and other available help resources, see
http://dakota.sandia.gov/resources.html.

2.1.2 Running Dakota with a simple input file

This section is intended for users who are new to Dakota, to demonstrate the basics of running a simple example.

First Steps

1. Make sure Dakota runs. You should see Dakota version information when you type: dakota -v
2. Create a working directory

3. Copy rosenmultidim. in from the Dakota/examples/users/ directory to the working direc-
tory — see Section 1.5 for help.

4. From the working directory, run dakota —-i rosenmultidim.in —-o rosenmultidim.out
> rosenmultidim.stdout

What should happen
Dakota outputs a large amount of information to help users track progress. Four files should have been created:

1. The screen output has been redirected to the file rosen multidim. stdout.
The contents are messages from Dakota and notes about the progress of the iterator (i.e. method/algorithm).

2. The output file rosen_multidim. out contains information about the function evaluations.

3. rosenmultidim.dat is created due to the specification of tabular_graphics_data and
tabular_graphics_file. This summarizes the variables and responses for each function evaluation.

4. dakota.rst is arestart file. If a Dakota analysis is interrupted, it can be often be restarted without losing
all progress.

In addition to the files, some plots are created due to the specification of graphics. These can be helpful when
processing the data or diagnosing unexpected results.

Dakota has some data processing capabilities for output analysis. The output file will contain the relevant results.
In this case, the output file has details about each of the 81 function evaluations. For more advanced or customized
data processing or visualization, the tabular data file can be imported into another analysis tool.

What now?
e Assuming Dakota ran successfully, skim the three text files (restart files are in a binary format). These are
described further in Section 2.1.3.

e This example used a parameter study method, and the Rosenbrock test problem. More details about the
example are in Section 2.3.2 and the test problem is described in Sections 2.3.1 and 21.2.
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Explore the many methods available in Dakota in Chapters 3— 8.

e Try running the other examples in the same directory. These are mentioned throughout the manual, and
listed in Table 2.1 for convenience.

Learn the syntax needed to use these methods. For help running Dakota, see Section 2.4 and for input file
information, see Section 2.2.

Learn how to use your own analysis code with Dakota in Chapter 17.

2.1.3 Examples of Dakota output

Beyond numerical results, all output files provide information that allows the user to check that the actual analysis
was the intended analysis. More details on all outputs can be found in Chapter 14.

Screen output saved to a file

Whenever an output file is specified for a Dakota run, the screen output itself becomes quite minimal consisting
of version statements, strategy statements and execution times.

Output file

The output file is much more extensive, because it contains information on every function evaluation (See Figure
2.1). It is organized into three basic parts:

1. Information on the problem

For this example, we see that a new restart file is being created and Dakota has carried out a
multidim_parameter_study with 8 partitions for each of two variables.

2. Information on each function evaluation

Each function evaluation is numbered. Details for function evaluation 1 show that at input vari-
able values 1 = —2.0 and 22 = —2.0, the direct rosenbrock function is being evaluated. There
is one response with a value of 3.609e+03.

3. Summary statistics

The function evaluation summary is preceeded by << << <. For this example 81 total evalua-
tions were assessed; all were new, none were read in from the restart file. Correlation matrices
complete the statistics and output for this problem. Successful runs will finish with <<<<<
Iterator study_type completed.

Tabular output file

For this example, the default name for the tabular output file dakota_tabular.dat was changed in the input
file to rosen.multidim.dat. This tab-delimited text file (Figure 2.1.3) summarizes the inputs and outputs to
the function evaluator. The first line contains the names of the variables and responses:

Yeval_id x1 x2 response_fn_1
The number of function evaluations will match the number of evaluations listed in the summary part of the output
file for single method strategies; the names of inputs and outputs will match the descriptors specified in the input
file. This file is ideal for import into other data analysis packages.
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{Writing new restart file dakota.rst
methodName
gradientType = none
hessianType = none

>>>>> Running multidim_parameter_study iterator.

Multidimensional parameter study for variable partitions of

Parameters for function evaluation 1:

Direct function: invoking rosenbrock

Active response data for function evaluation 1:
Active set vector = { 1 }

<<<<< Function evaluation summary: 81 total (8l new, 0 duplicate)

Simple Correlation Matrix among all inputs and outputs:

response_fn_1 -3.00705e-03 -5.01176e-01 1.00000e+00

<<<<< Iterator multidim_parameter_study completed.}

= multidim_parameter_study

-2.0000000000e+00 x1
-2.0000000000e+00 x2

3.6090000000e+03 response_fn_1

x1 x2 response_fn_1
x1 1.00000e+00
x2 1.73472e-17 1.00000e+00

Figure 2.1: Rosenbrock 2-D parameter study example: excerpt from output file

%eval_id

Sw N

x1 x2 response_fn_1
-2 -2 3609
-1.5 -2 1812.5
-1 -2 904
-0.5 -2 508.5

Figure 2.2: Rosenbrock 2-D parameter study example: excerpt from tabular data file
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2.2 Dakota Input File Format

See Section 1.5 for location of all files referenced in this manual.

A simple Dakota input file, rosen_ multidim. in, for a two-dimensional parameter study on Rosenbrock’s
function is shown in Figure 2.3. This input file will be used to describe the basic format and syntax used in all
Dakota input files. The results are shown later, in Section 2.3.2.

# Dakota Input File: rosen_multidim.in

# Usage:
# dakota —-i rosen_multidim.in —-o rosen_multidim.out > rosen_multidim.stdout
strategy
graphics
tabular_graphics_data
tabular_graphics_file = 'rosen_multidim.dat’

single_method

method
multidim_parameter_study
partitions = 8 8

model
single
variables
continuous_design = 2
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors rx1’ "x2"
interface
analysis_driver = ’rosenbrock’
direct
responses
response_functions = 1

no_gradients
no_hessians

Figure 2.3: Rosenbrock 2-D parameter study example: the Dakota input file.

There are six specification blocks that may appear in Dakota input files. These are identified in the input file using
the following keywords: variables, interface, responses, model, method, and strategy. These keyword blocks can
appear in any order in a Dakota input file. At least one variables, interface, responses, and method specification
must appear, and no more than one strategy specification should appear. In Figure 2.3, one of each of the keyword
blocks is used. Additional syntax features include use of the # symbol to indicate a comment, use of single or
double quotes for string inputs (e.g., * x1 '), the use of commas and/or white space for separation of specifications,
and the optional use of “=" symbols to indicate supplied data. See the Dakota Reference Manual [3] for additional
details on this input file syntax.

Figure 2.4 shows the relationships between the six keyword blocks. Strategies are used to coordinate between
methods. Methods run models. Models blocks define the connections between variables, the interface, and
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responses. Figure 2.4 shows the most common relationships between blocks but others are possible. Most Dakota
analyses apply strategies that control a single method, the more advanced cases are discussed in Chapter 15.

Strategy
3 N
\ h
Method 1 Method 2
F Y
A 4 v
Model 1 Model 2
Variables 1 Variables 2
Interface 1 Interface 2
Responses 1 Responses 2

Figure 2.4: Relationship between the six blocks

The first block of the input file shown in Figure 2.3 is the strategy block. This keyword block is used to specify
some of Dakota’s advanced meta-procedures such as hybrid optimization, multi-start optimization, and Pareto
optimization. See Chapter 15 for more information on these meta-procedures. The strategy block also con-
tains the settings for Dakota’s graphical output (via the graphics flag) and the tabular data output (via the
tabular_graphics_data keyword).

The method block of the input file specifies the iterative technique that Dakota will employ, such as a parameter
study, optimization method, data sampling technique, etc. The keyword multidim parameter_study in
Figure 2.3 calls for a multidimensional parameter study, while the keyword partitions specifies the number
of intervals per variable. In this case, there will be eight intervals (nine data points) evaluated between the lower
and upper bounds of both variables (bounds provided subsequently in the variables section), for a total of 81
response function evaluations.

The model block of the input file specifies the model that Dakota will use. A model provides the logical unit
for determining how a set of variables is mapped into a set of responses in support of an iterative method. The
model allows one to specify a single interface, or to manage more sophisticated mappings involving surrogates
or nested iteration. For example, one might want to use an approximate model for optimization or uncertainty
quantification, due to the lower computational cost. The mode 1 keyword allows one to specify if the iterator will
be operating on a data fit surrogate (such as a polynomial regression, neural net, etc.), a hierarchical surrogate
(which uses the corrected results of a lower fidelity simulation model as an approximation to a higher fidelity
simulation), or a nested model. See Chapter 9 for additional model specification details. If these advanced
facilities for surrogate modeling or nested iteration are not required, then it is not necessary to specify the model
keyword at all, since the default behavior is the use of a “single” model constructed with the last set of responses,
variables, and interface specified. In Figure 2.3, the keyword single explicitly specifies the use of a single
model in the parameter study, even though this is the default.

The variables block of the input file specifies the characteristics of the parameters that will be used in the problem
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formulation. The variables can be continuous or discrete, and can be classified as design variables, uncertain
variables, or state variables. See Chapter 10 for more information on the types of variables supported by Dakota.
The variables section shown in Figure 2.3 specifies that there are two continuous design variables. The sub-
specifications for continuous design variables provide the descriptors “x1” and “x2” as well as lower and upper
bounds for these variables. The information about the variables is organized in column format for readability. So,
both variables x1 and x5 have a lower bound of -2.0 and an upper bound of 2.0.

The interface block of the input file specifies what approach will be used to map variables into responses as well
as details on how Dakota will pass data to and from a simulation code. In this example, the keyword direct is
used to indicate the use of a function linked directly into Dakota. Alternatively, fork or system executions can
be used to invoke instances of a simulation code that is external to Dakota, as explained in Section 2.3.5.2 and
Chapter 17. The analysis_driver keyword indicates the name of the test function. With fork or system,
default file names would be used for passing data between Dakota and the simulation code.

The responses block of the input file specifies the types of data that the interface will return to Dakota. For
the example shown in Figure 2.3, the assignment num_objective_functions = 1 indicates that there is
only one objective function. Since there are no constraints associated with Rosenbrock’s function, the keywords
for constraint specifications are omitted. The keywords no_gradients and no_hessians indicate that no
derivatives will be provided to the method; none are needed for a parameter study.

2.3 Examples

This section serves to familiarize users about how to perform parameter studies, optimization, and uncertainty
quantification through their common Dakota interface. The initial examples utilize simple built in driver functions;
later we show how to utilize Dakota to drive the evaluation of user supplied black box code. The examples
presented in this chapter are intended to show the simplest use of Dakota for methods of each type. More advanced
examples of using Dakota for specific purposes are provided in subsequent, topic-based, chapters.

2.3.1 Rosenbrock Test Problem

The examples shown later in this chapter use the Rosenbrock function [99] (also described in [46], among other
places), which has the form:

f(zy,m2) = 100(zy — 22)* + (1 — 21)? 2.1

A three-dimensional plot of this function is shown in Figure 2.5(a), where both x; and x5 range in value from —2
to 2. Figure 2.5(b) shows a contour plot for Rosenbrock’s function. An optimization problem using Rosenbrock’s
function is formulated as follows:

minimize f(z1,22)
x € R?
subject to —2<x1 <2 2.2)
—2<x9<2

Note that there are no linear or nonlinear constraints in this formulation, so this is a bound constrained optimization
problem. The unique solution to this problem lies at the point (z1, z2) = (1, 1), where the function value is zero.
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Figure 2.5: Rosenbrock’s function: (a) 3-D plot and (b) contours with x; on the bottom axis.

Several other test problems are available. See Chapter 21 for a description of these test problems as well as further
discussion of the Rosenbrock test problem.

2.3.2 Two-Dimensional Grid Parameter Study

Parameter study methods in the Dakota toolkit involve the computation of response data sets at a selection of
points in the parameter space. These response data sets are not linked to any specific interpretation, so they may
consist of any allowable specification from the responses keyword block, i.e., objective and constraint functions,
least squares terms and constraints, or generic response functions. This allows the use of parameter studies in
direct coordination with optimization, least squares, and uncertainty quantification studies without significant
modification to the input file.

An example of a parameter study is the 2-D parameter study example problem listed in Figure 2.3. This is
executed by Dakota using the command noted in the comments:

dakota —-i rosen_multidim.in -o rosen_multidim.out > rosen_multidim.stdout

The output of the Dakota run is written to the file named rosen_multidim.out while the screen output, or
standard output, is redirect to rosen_multidim. For comparison, files named rosen multidim.out.sav
and rosenmultidim.stdout.sav are included in the Dakota/examples/users directory. As for
many of the examples, Dakota provides a report on the best design point located during the study at the end of
these output files.

This 2-D parameter study produces the grid of data samples shown in Figure 2.6. In general, a multidimensional
parameter study lets one generate a grid in multiple dimensions. The keyword multidim parameter_study
indicates that a grid will be generated over all variables. The keyword partitions indicates the number of grid
partitions in each dimension. For this example, the number of the grid partitions are the same in each dimension (8
partitions) but it would be possible to specify (partitions = 8 2), and have only two partitions over the second input
variable. Note that the graphics flag in the strategy block of the input file could be commented out since, for
this example, the iteration history plots created by Dakota are not particularly instructive. More interesting visu-
alizations can be created by importing Dakota’s tabular data into an external graphics/plotting package. Common
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graphics and plotting packages include Mathematica, Matlab, Microsoft Excel, Origin, Tecplot, and many others.
(Sandia National Laboratories and the Dakota developers do not endorse any of these commercial products.)

Figure 2.6: Rosenbrock 2-D parameter study example: location of the design points (dots) evaluated.

2.3.3 Gradient-based Unconstrained Optimization

Dakota’s optimization capabilities include a variety of gradient-based and nongradient-based optimization meth-
ods. This subsection demonstrates the use of one such method through the Dakota interface.

A Dakota input file for a gradient-based optimization of Rosenbrock’s function is listed in Figure 2.7. The
format of the input file is similar to that used for the parameter studies, but there are some new keywords in
the responses and method sections. First, in the responses block of the input file, the keyword block start-
ing with numerical_gradients specifies that a finite difference method will be used to compute gradi-
ents for the optimization algorithm. Note that the Rosenbrock function evaluation code inside Dakota has the
ability to give analytical gradient values. (To switch from finite difference gradient estimates to analytic gra-
dients, uncomment the analytic_gradients keyword and comment out the four lines associated with the
numerical_gradients specification.) Next, in the method block of the input file, several new keywords have
been added. In this block, the keyword conmin_frcg indicates the use of the Fletcher-Reeves conjugate gra-
dient algorithm in the CONMIN optimization software package [121] for bound-constrained optimization. The
keyword max_iterations is used to indicate the computational budget for this optimization (in this case, a
single iteration includes multiple evaluations of Rosenbrock’s function for the gradient computation steps and the
line search steps). The keyword convergence_tolerance is used to specify one of CONMIN’s convergence
criteria (under which CONMIN terminates if the objective function value differs by less than the absolute value
of the convergence tolerance for three successive iterations).

The Dakota command is noted in the file, and copies of the outputs are in the Dakota/examples/users
directory, with . sav appended to the name. When this example problem is executed, Dakota creates some
iteration history graphics similar to the screen capture shown in Figure 2.8(a). These plots show how the objective
function and design parameters change in value during the optimization steps. The scaling of the horizontal and
vertical axes can be changed by moving the scroll knobs on each plot. Also, the “Options” button allows the user
to plot the vertical axes using a logarithmic scale. Note that log-scaling is only allowed if the values on the vertical
axis are strictly greater than zero.
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# Dakota Input File:
# Usage:

strategy
graphics
tabular_graphics_data
tabular_graphics_file
single_method

no_hessians

rosen_grad_opt.in

= ’'rosen_grad_opt.dat’

method
max_iterations = 100
convergence_tolerance = le-4
conmin_frcg
model
single
variables
continuous_design = 2
initial_point -1.2 1.0
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors rx1’ "x2"
interface
analysis_driver = ’rosenbrock’
direct
responses
objective_functions = 1
# analytic_gradients
numerical_gradients
method_source dakota
interval_type forward
fd_gradient_step_size = 1l.e-5

# dakota —-i rosen_grad_opt.in -o rosen_grad_opt.out > rosen_grad_opt.stdout

Figure 2.7: Rosenbrock gradient-based unconstrained optimization example: the Dakota input file.
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Figure 2.8: Rosenbrock gradient-based unconstrained optimization example: (a) screen capture of the Dakota
graphics and (b) sequence of design points (dots) evaluated (line search points omitted).

Figure 2.8(b) shows the iteration history of the optimization algorithm. The optimization starts at the point
(x1,22) = (—1.2,1.0) as given in the Dakota input file. Subsequent iterations follow the banana-shaped val-
ley that curves around toward the minimum point at (x1,23) = (1.0,1.0). Note that the function evaluations
associated with the line search phase of each CONMIN iteration are not shown on the plot. At the end of the
Dakota run, information is written to the output file to provide data on the optimal design point. These data in-
clude the optimum design point parameter values, the optimum objective and constraint function values (if any),
plus the number of function evaluations that occurred and the amount of time that elapsed during the optimization
study.

2.3.4 Uncertainty Quantification with Monte Carlo Sampling

Uncertainty quantification (UQ) is the process of determining the effect of input uncertainties on response metrics
of interest. These input uncertainties may be characterized as either aleatory uncertainties, which are irreducible
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variabilities inherent in nature, or epistemic uncertainties, which are reducible uncertainties resulting from a lack
of knowledge. Since sufficient data is generally available for aleatory uncertainties, probabilistic methods are
commonly used for computing response distribution statistics based on input probability distribution specifica-
tions. Conversely, for epistemic uncertainties, data is generally sparse, making the use of probability theory
questionable and leading to nonprobabilistic methods based on interval specifications.

The subsection demonstrates the use of Monte Carlo random sampling for Uncertainty Quantification.

Figure 2.9 shows the Dakota input file for an example problem that demonstrates some of the random sampling
capabilities available in Dakota. In this example, the design parameters, x1 and x2, will be treated as uncertain
parameters that have uniform distributions over the interval [-2, 2]. This is specified in the variables block of
the input file, beginning with the keyword uniform_uncertain. Another difference from earlier input files
such as Figure 2.7 occurs in the responses block, where the keyword response_functions is used in place
of objective_functions. The final changes to the input file occur in the method block, where the keyword
sampling is used.

The other keywords in the methods block of the input file specify the number of samples (200), the seed for the
random number generator (17), the sampling method (random), and the response threshold (100.0). The seed
specification allows a user to obtain repeatable results from multiple runs. If a seed value is not specified, then
Dakota’s sampling methods are designed to generate nonrepeatable behavior (by initializing the seed using a
system clock). The keyword response_levels allows the user to specify threshold values for which Dakota
will compute statistics on the response function output. Note that a unique threshold value can be specified for
each response function.

In this example, Dakota will select 200 design points from within the parameter space, evaluate the value of
Rosenbrock’s function at all 200 points, and then perform some basic statistical calculations on the 200 response
values.

The Dakota command is noted in the file, and copies of the outputs are in the Dakota/examples/users
directory, with . sav appended to the name. Figure 2.10 shows example results from this sampling method. Note
that your results will differ from those in this file if your seed value differs or if no seed is specified.

As shown in Figure 2.10, the statistical data on the 200 Monte Carlo samples is printed at the end of the output
file in the section that starts with “Statistics based on 200 samples.” In this section summarizing moment-based
statistics, Dakota outputs the mean, standard deviation, skewness, and kurtosis estimates for each of the response
functions. For example, the mean of the Rosenbrock function given uniform input uncertainties on the input
variables is 455.4 and the standard deviation is 536.8. This is a very large standard deviation, due to the fact that
the Rosenbrock function varies by three orders of magnitude over the input domain. The skewness is positive,
meaning this is a right-tailed distribution, not a symmetric distribution. Finally, the kurtosis (a measure of the
“peakedness” of the distribution) indicates that this is a strongly peaked distribution (note that we use a central,
standardized kurtosis so that the kurtosis of a normal is zero). After the moment-related statistics, the 95% con-
fidence intervals on the mean and standard deviations are printed. This is followed by the fractions (“Probability
Level”) of the response function values that are below the response threshold values specified in the input file. For
example, 34 percent of the sample inputs resulted in a Rosenbrock function value that was less than or equal to
100, as shown in the line listing the cumulative distribution function values. Finally, there are several correlation
matrices printed at the end, showing simple and partial raw and rank correlation matrices. Correlations provide
an indication of the strength of a monotonic relationship between input and outputs. More detail on correlation
coefficients and their interpretation can be found in Section 5.2.1. More detail about sampling methods in general
can be found in Section 5.2. Finally, Figure 2.11 shows the locations of the 200 sample sites within the parameter
space of the Rosenbrock function for this example.
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# Dakota Input File: rosen_sampling.in

# Usage:
# dakota —-i rosen_sampling.in -o rosen_sampling.out > rosen_sampling.stdout
strategy
graphics
tabular_graphics_data
tabular_graphics_file = ’'rosen_sampling.dat’

single_method

method
sampling
sample_type random
samples = 200

seed = 17
response_levels = 100.0
model
single
variables
uniform_uncertain = 2
lower_bounds -2.0 -=2.0
upper_bounds 2.0 2.0
descriptors rx1r 'x2!
interface
analysis_driver = ’rosenbrock’
direct
responses
response_functions = 1

no_gradients
no_hessians

Figure 2.9: Monte Carlo sampling example: the Dakota input file.

2.3.5 User Supplied Simulation Code Examples

This subsection provides examples of how to use Dakota to drive user supplied black box code.

2.3.5.1 Optimization with a User-Supplied Simulation Code - Case 1

Many of the previous examples made use of the direct interface to access the Rosenbrock and textbook test
functions that are compiled into Dakota. In engineering applications, it is much more common to use the fork
interface approach within Dakota to manage external simulation codes. In both of these cases, the communication
between Dakota and the external code is conducted through the reading and writing of short text files. For this
example, the C++ program rosenbrock.C in Dakota_Source/test is used as the simulation code. This
file is compiled to create the stand-alone rosenbrock executable that is referenced as the analysis_driver
in Figure 2.12. This stand-alone program performs the same function evaluations as Dakota’s internal Rosenbrock
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Statistics based on 200 samples:

Moment-based statistics for each response function:
Mean std Dev Skewness Kurtosis
response_fn_1 4.5540183516e+02 5.3682678089%e+02 1.6661798252e+00 2.7925726822e+00

95% confidence intervals for each response function:
LowerCI_Mean UpperCI_Mean LowerCI_StdDev UpperCI_StdDev
response_fn_1 3.8054757609e+02 5.3025609422e+02 4.8886795789%e+02 5.9530059589e+02

Level mappings for each response function:
Cumulative Distribution Function (CDF) for response_fn_1:
Response Level Probability Level Reliability Index General Rel Index

1.0000000000e+02 3.4000000000e-01

Probability Density Function (PDF) histograms for each response function:
PDF for response_fn_1:
Bin Lower Bin Upper Density Value
1.1623549854e-01 1.0000000000e+02 3.4039566059e-03
1.0000000000e+02 2.7101710856e+03 2.5285698843e-04

Simple Correlation Matrix among all inputs and outputs:
x1 x2 response_fn_1
x1 1.00000e+00
x2 -5.85097e-03 1.00000e+00
response_fn_1 -9.57746e-02 -5.08193e-01 1.00000e+00

Partial Correlation Matrix between input and output:
response_fn_1
x1l -1.1465%9e-01
x2 =5.11111e-01

Simple Rank Correlation Matrix among all inputs and outputs:
x1 x2 response_fn_1
x1 1.00000e+00
x2 —6.03315e-03 1.00000e+00
response_fn_1 -1.15360e-01 -5.04661e-01 1.00000e+00

Partial Rank Correlation Matrix between input and output:
response_fn_1
x1 -1.37154e-01
x2 -5.08762e-01

Figure 2.10: Results of Monte Carlo Sampling on the Rosenbrock Function
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Figure 2.11: Monte Carlo sampling example: locations in the parameter space of the 200 Monte Carlo samples
using a uniform distribution for both 21 and x».

test function.

Figure 2.12 shows the text of the Dakota input file named rosen_syscall. in that is provided in the directory
Dakota/examples/users. The only differences between this input file and the one in Figure 2.7 occur in
the interface keyword section. The keyword fork indicates that Dakota will use fork calls to create separate Unix
processes for executions of the user-supplied simulation code. The name of the simulation code, and the names
for Dakota’s parameters and results file are specified using the analysis_driver, parameters_file, and
results_file keywords, respectively.

The Dakota command is noted in the file, and copies of the outputs are in the Dakota/examples/users
directory, with . sav appended to the name.

This run of Dakota takes longer to complete than the previous gradient-based optimization example since the
fork interface method has additional process creation and file I/O overhead, as compared to the internal com-
munication that occurs when the direct interface method is used.

To gain a better understanding of what exactly Dakota is doing with the fork interface approach, add the key-
words file_tag and file_save to the interface specification and re-run Dakota. Check the listing of the
local directory and you will see many new files with names such as params.in.1, params.in.2, etc., and
results.out.1, results.out.?2, etc. There is one params.in.X file and one results.out.X file
for each of the function evaluations performed by Dakota. This is the file listing for params.in.1:

2 variables

-1.200000000000000e+00 x1
1.000000000000000e+00 x2

1 functions

1 ASV_1:0bj_fn
derivative_variables
DVV_1:x1
DVV_2:x2
analysis_components

O NN

The basic pattern is that of array lengths and string identifiers followed by listings of the array entries, where the
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arrays consist of the variables, the active set vector (ASV), the derivative values vector (DVV), and the analysis
components (AC). For the variables array, the first line gives the total number of variables (2) and the “variables”
string identifier, and the subsequent two lines provide the array listing for the two variable values (-1.2 and 1.0)
and descriptor tags (“x1” and “x2” from the Dakota input file). The next array conveys the ASV, which indicates
what simulator outputs are needed. The first line of the array gives the total number of response functions (1)
and the “functions” string identifier, followed by one ASV code and descriptor tag (“ASV_1") for each function.
In this case, the ASV value of 1 indicates that Dakota is requesting that the simulation code return the response
function value in the file results.out .X. (Possible ASV values: 1 = value of response function value, 2 =
response function gradient, 4 = response function Hessian, and any sum of these for combinations up to 7 =

# Dakota Input File: rosen_syscall.in

# Usage:
# dakota -1 rosen_syscall.in -o rosen_syscall.out > rosen_syscall.stdout
strategy
graphics
tabular_graphics_data
tabular_graphics_file = ’'rosen_syscall.dat’

single_method

method
max_iterations = 100
convergence_tolerance = le-4

conmin_frcg

model
single
variables
continuous_design = 2
initial_point -1.2 1.0
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors rx1’ "x2"
interface
analysis_driver = ’rosenbrock’
fork
parameters_file = ’'params.in’

results_file "results.out’
responses
objective_functions = 1
numerical_gradients
method_source dakota
interval_type forward
fd_gradient_step_size = l.e-5
no_hessians

Figure 2.12: Dakota input file for gradient-based optimization using the fork call interface to an external rosen-
brock simulator.
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response function value, gradient, and Hessian; see 10.7 for more detail.) The next array provides the DVYV,
which defines the variable identifiers used in computing derivatives. The first line of the array gives the number
of derivative variables (2) and the “derivative_variables” string identifier, followed by the listing of the two DVV
variable identifiers (the first and second variables) and descriptor tags (“DVV_1" and “DVV_2”). The final array
provides the AC array used to provide additional strings for use by the simulator (e.g., to provide the name of
a particular mesh file). The first line of the array gives the total number of analysis components (0) and the
“analysis_components” string identifier, followed by the listing of the array, which is empty in this case.

The executable program rosenbrock reads in the params. in.X file and evaluates the objective function at the
given values for 1 and 2. Then, rosenbrock writes out the objective function data to the results.out . X file.
Here is the listing for the file results.out.1:

2.420000000000000e+01 £

The value shown above is the value of the objective function, and the descriptor ‘f” is an optional tag returned by
the simulation code. When the fork call has completed, Dakota reads in the data from the results.in.X file
and processes the results. Dakota then continues with additional executions of the rosenbrock program until the
optimization process is complete.

2.3.5.2 Optimization with a User-Supplied Simulation Code - Case 2

In many situations the user-supplied simulation code cannot be modified to read and write the params.in.X
file and the results.out.X file, as described above. Typically, this occurs when the simulation code is a
commercial or proprietary software product that has specific input file and output file formats. In such cases, it
is common to replace the executable program name in the Dakota input file with the name of a Unix shell script
containing a sequence of commands that read and write the necessary files and run the simulation code. For
example, the executable program named rosenbrock listed in Figure 2.12 could be replaced by a Unix Bourne
or C-shell script named simulator_script, with the script containing a sequence of commands to perform
the following steps: insert the data from the parameters. in.X file into the input file of the simulation code,
execute the simulation code, post-process the files generated by the simulation code to compute response data, and
return the response data to Dakota in the results.out.X file. The steps that are typically used in constructing
and using a Unix shell script are described in Section 17.1.

2.4 Dakota Command-Line Options

The Dakota executable file is named dakota (dakota.exe on Windows). If this command is entered at the
command prompt without any arguments, a usage message similar to the following appears:

usage: dakota [options and <args>]
~help (Print this summary)
-version (Print Dakota version number)
—-input <$val> (REQUIRED Dakota input file $val)
—output <$val> (Redirect Dakota standard output to file $val)
—error <$val> (Redirect Dakota standard error to file $val)
-parser <$val> (Parsing technology: nidr[strict] [:dumpfile])
-no_input_echo (Do not echo Dakota input file)
—-check (Perform input checks)
-pre_run [$val] (Perform pre-run (variables generation) phase)
-run [$val] (Perform run (model evaluation) phase)
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-post_run [$val] (Perform post-run (final results) phase)
-read_restart [$val] (Read an existing Dakota restart file $val)
-stop_restart <$val> (Stop restart file processing at evaluation $val)
-write_restart [$val] (Write a new Dakota restart file $val)

Of these available command line inputs, only the “~input” option is required, and “~input” can be omitted
if the input file name is the final item on the command line; all other command-line inputs are optional. The
“~help” option prints the usage message above. The “~version” option prints the version number of the
executable. The “~check” option invokes a dry-run mode in which the input file is processed and checked for
errors, but the study is not performed. The “~input” option provides the name of the Dakota input file. The
“—output” and “~error” options provide file names for redirection of the Dakota standard output (stdout)
and standard error (stderr), respectively. By default, Dakota will echo the input file to the output stream, but
“—no_input_echo” can override this behavior.

The “~parser” input is for debugging and will not be further described here. The “~read_restart” and
“~write_restart” command line inputs provide the names of restart databases to read from and write to,
respectively. The “~stop_restart” command line input limits the number of function evaluations read from
the restart database (the default is all the evaluations) for those cases in which some evaluations were erroneous
or corrupted. Restart management is an important technique for retaining data from expensive engineering ap-
plications. This advanced topic is discussed in detail in Chapter 19. Note that these command line inputs can be
abbreviated so long as the abbreviation is unique, so the following are valid, unambiguous specifications: “~h”,

113 9 ¢ 9% 6 199 ¢ 9% < 9 ELINNTS 9 < 9% < EEINNTS

v, “=c”, “=17, =07, “=e”, “—re”, “=8”, “-w”, “~pr”, “~ru”, and “~po” and can be used in place of the
longer forms of the command line inputs.

To run Dakota with a particular input file, the following syntax can be used:
dakota —-i dakota.in

or more simply
dakota dakota.in

This will echo the standard output (stdout) and standard error (stderr) messages to the terminal. To redirect stdout
and stderr to separate files, the —o and —e command line options may be used:

dakota -1 dakota.in -o dakota.out -e dakota.err
or
dakota -o dakota.out -e dakota.err dakota.in

Alternatively, any of a variety of Unix redirection variants can be used. The simplest of these redirects stdout to
another file:

dakota dakota.in > dakota.out

To run the dakota process in the background, append an ampersand symbol (&) to the command with an embedded
space, e.g.,

dakota dakota.in > dakota.out &
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Refer to [5] for more information on Unix redirection and background commands.

9 <

The “~pre_run”, “~run”, and “~post_run” switches instruct Dakota to run one or more execution phases,
excluding others. For example pre-run might generate variable sets, run (core run) invoke the simulation to
evaluate variables, producing responses, and post-run accepts variable/response sets and analyzes the results (for
example, calculate correlations from a set of samples). Currently only two modes are supported and only for
sampling, parameter study, and DACE methods: (1) pre-run only with optional tabular output of variables:

dakota -1 dakota.in -pre_run [::myvariables.dat]
and (2) post-run only with required tabular input of variables/responses:

dakota -i dakota.in -post_run myvarsresponses.dat::

2.5 Next Steps

After reading this chapter, you should understand the mechanics of acquiring, installing, and excuting Dakota
to perform simple studies. You should have a high-level appreciation for what inputs Dakota requires, how it
behaves during interfacing and operation for a few kinds of studies, and what representative output results. To
effectively use Dakota, you will need to understand the character of your problem, select a Dakota method to help
you meet your analysis goals, and develop an interface to your computational model.

2.5.1 Problem Exploration and Method Selection

Section 1.2 provides a high-level overview of the analysis techniques available in Dakota, with references to more
details and usage guidelines in the following chapters. Selecting an appropriate method to meet your analysis
goals requires understanding problem characteristics. For example, in optimization, typical questions that should
be addressed include: Are the design variables continuous, discrete, or mixed? Is the problem constrained or un-
constrained? How expensive are the response functions to evaluate? Will the response functions behave smoothly
as the design variables change or will there be nonsmoothness and/or discontinuities? Are the response functions
likely to be multimodal, such that global optimization may be warranted? Is analytic gradient data available,
and if not, can gradients be calculated accurately and cheaply? Questions pertinent for uncertainty quantification
may include: Can I accurately model the probabilistic distributions of my uncertain variables? Are the response
functions relatively linear? Am I interested in a full random process characterization of the response functions, or
just statistical results?

If there is not sufficient information from the problem description and prior knowledge to answer these questions,
then additional problem characterization activities may be warranted. Dakota parameter studies and design of
experiments methods can help answer these questions by systematically interrogating the model. The resulting
trends in the response functions can be evaluated to determine if these trends are noisy or smooth, unimodal or
multimodal, relatively linear or highly nonlinear, etc. In addition, the parameter studies may reveal that one or
more of the parameters do not significantly affect the results and can be omitted from the problem formulation.
This can yield a potentially large savings in computational expense for the subsequent studies. Refer to Chapters 3
and 4 for additional information on parameter studies and design of experiments methods.

For a list of all the example Dakota input files, see Table 2.1. All of these input files can be found in Dakota/examples/users.
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Table 2.1: List of Example Input Files

Method Category Specific Method Input File Name Reference
parameter study multidimensional parameter study rosen_multidim.in 23
parameter study vector parameter study rosen_ps_vector.in 3.3
parameter study moat (Morris) morris_ps_moat.in 21.19

uncertainty quantification random sampling rosen_sampling.in 29
uncertainty quantification LHS sampling textbook_uq_sampling.in 5.2
uncertainty quantification polynomial chaos expansion rosen_uq-pce.in 5.14
uncertainty quantification stochastic collocation rosen_ug-sc.in 5.17
uncertainty quantification reliability Mean Value textbook _uq_meanvalue.in 5.8
uncertainty quantification reliability FORM logratio_uq_reliability.in 5.10
uncertainty quantification global interval analysis cantilever_uq-global_interval.in 5.20
uncertainty quantification global evidence analysis textbook_uq_glob_evidence.in 5.23
uncertainty quantification sampling on a surrogate model textbook_uq_surrogate.in
uncertainty quantification second order probability cantilever_ug_sop_rel.in 16.2
optimization gradient-based, unconstrained rosen_grad_opt.in 2.7
optimization gradient-based, constrained textbook _opt_conmin.in 21.2
optimization gradient-based, constrained cantilever_opt_npsol.in 21.13
optimization gradient-based, constrained container_opt_npsol.in 14.1
optimization evolutionary algorithm rosen_opt_ea.in 6.3
optimization pattern search rosen_opt_patternsearch.in 6.1
optimization efficient global optimization (EGO) rosen_opt_ego.in 8.5
optimization efficient global optimization (EGO) herbie_shubert_opt_ego.in 21.7
optimization multiobjective textbook_opt_multiobjl.in 6.5
optimization Pareto opt., moga mogatestl.in 6.7
optimization Pareto opt., moga mogatest2.in 21.14
optimization Pareto opt., moga mogatest3.in 21.16
optimization Pareto opt., moga, surrogate mogatest] _opt_sbo.in 8.4
optimization surrogate based (SBO) rosen_opt_sbo.in 8.2
optimization opt. under uncertainty (OUU) textbook_opt_ouul.in 16.5
optimization optimization with scaling rosen_opt_scaled.in 6.9
calibration nonlinear least squares rosen_opt_nls.in 21.4
calibration NLS with datafile textbook _nls_datafile.in
hybrid strategy three opt. methods textbook_hybrid_strat.in 15.1
Pareto strategy Pareto strategy textbook_pareto_strat.in 15.4
Multistart strategy opt. from multiple starting points gsf_multistart_strat.in 15.2
system call rosen_syscall.in 2.12
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2.5.2 Key Getting Started References
The following references address many of the most common questions raised by new Dakota users:

e Dakota documentation and training materials are available from the Dakota website http://dakota.
sandia.gov.

e Dakota input file syntax (valid keywords and settings) is described in the Dakota Reference Manual [3].

e Example input files are included throughout this manual, and are included in Dakota distributions and
installations. See Section 1.5 for help finding these files.

e Detailed method descriptions appear in the Method Tour in Chapters 3 through 8.

e Building an interface to a simulation code: Section 17.1, and related information on parameters file formats
(Section 10.6) and results file format (Section 12.2).

e Chapter 14 describes the different Dakota output file formats, including commonly encountered error mes-
sages.

e Chapter 19 describes the file restart and data re-use capabilities of Dakota.
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Chapter 3

Parameter Study Capabilities

3.1 Overview

Dakota parameter studies explore the effect of parametric changes within simulation models by computing re-
sponse data sets at a selection of points in the parameter space, yielding one type of sensitivity analysis. (For a
comparison with DACE-based sensitivity analysis, see Section 4.6.) The selection of points is deterministic and
structured, or user-specified, in each of the four available parameter study methods:

e Vector: Performs a parameter study along a line between any two points in an n-dimensional parameter
space, where the user specifies the number of steps used in the study.

e List: The user supplies a list of points in an n-dimensional space where Dakota will evaluate response data
from the simulation code.

e Centered: Given a point in an n-dimensional parameter space, this method evaluates nearby points along
the coordinate axes of the parameter space. The user selects the number of steps and the step size.

e Multidimensional: Forms a regular lattice or hypergrid in an n-dimensional parameter space, where the
user specifies the number of intervals used for each parameter.

More detail on these parameter studies is found in Sections 3.2 through 3.5 below.

When used in parameter studies, the response data sets are not linked to any specific interpretation, so they may
consist of any allowable specification from the responses keyword block, i.e., objective and constraint functions,
least squares terms and constraints, or generic response functions. This allows the use of parameter studies in
alternation with optimization, least squares, and uncertainty quantification studies with only minor modification
to the input file. In addition, the response data sets may include gradients and Hessians of the response functions,
which will be catalogued by the parameter study. This allows for several different approaches to “sensitivity
analysis”: (1) the variation of function values over parameter ranges provides a global assessment as to the
sensitivity of the functions to the parameters, (2) derivative information can be computed numerically, provided
analytically by the simulator, or both (mixed gradients) in directly determining local sensitivity information at a
point in parameter space, and (3) the global and local assessments can be combined to investigate the variation of
derivative quantities through the parameter space by computing sensitivity information at multiple points.

In addition to sensitivity analysis applications, parameter studies can be used for investigating nonsmoothness in
simulation response variations (so that models can be refined or finite difference step sizes can be selected for
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computing numerical gradients), interrogating problem areas in the parameter space, or performing simulation
code verification (verifying simulation robustness) through parameter ranges of interest. A parameter study can
also be used in coordination with minimization methods as either a pre-processor (to identify a good starting
point) or a post-processor (for post-optimality analysis).

Parameter study methods will iterate any combination of design, uncertain, and state variables defined over con-
tinuous and discrete domains into any set of responses (any function, gradient, and Hessian definition). Parameter
studies draw no distinction among the different types of continuous variables (design, uncertain, or state) or
among the different types of response functions. They simply pass all of the variables defined in the variables
specification into the interface, from which they expect to retrieve all of the responses defined in the responses
specification. As described in Section 12.3, when gradient and/or Hessian information is being catalogued in the
parameter study, it is assumed that derivative components will be computed with respect to all of the continuous
variables (continuous design, continuous uncertain, and continuous state variables) specified, since derivatives
with respect to discrete variables are assumed to be undefined. The specification of initial values or bounds is
important for parameter studies.

3.1.1 Initial Values

The vector and centered parameter studies use the initial values of the variables from the variables keyword
block as the starting point and the central point of the parameter studies, respectively. In the case of design
variables, the initial_point is used, and in the case of state variables, the initial_state isused (see the
Dakota Reference Manual [3] for default values when initial point or initial_state are unspecified).
In the case of uncertain variables, initial values are inferred from the distribution specification: all uncertain
initial values are set to their means, where mean values for bounded normal and bounded lognormal are repaired
of needed to satisfy the specified distribution bounds, mean values for discrete integer range distributions are
rounded down to the nearest integer, and mean values for discrete set distributions are rounded to the nearest
set value. These parameter study starting values for design, uncertain, and state variables are referenced in the
following sections using the identifier “Initial Values.”

3.1.2 Bounds

The multidimensional parameter study uses the bounds of the variables from the variables keyword block to
define the range of parameter values to study. In the case of design and state variables, the lower bounds
and upper_bounds specifications are used (see the Dakota Reference Manual [3] for default values when
lower_bounds or upper_bounds are unspecified). In the case of uncertain variables, these values are either
drawn or inferred from the distribution specification. Distribution lower and upper bounds can be drawn directly
from required bounds specifications for uniform, loguniform, triangular, and beta distributions, as well as from
optional bounds specifications for normal and lognormal. Distribution bounds are implicitly defined for histogram
bin, histogram point, and interval variables (from the extreme values within the bin/point/interval specifications)
as well as for binomial (0 to num_trials) and hypergeometric (0 to min(num-drawn,num_selected)) vari-
ables. Finally, distribution bounds are inferred for normal and lognormal if optional bounds are unspecified, as
well as for exponential, gamma, gumbel, frechet, weibull, poisson, negative binomial, and geometric (which have
no bounds specifications); these bounds are [0, ;14 30] for exponential, gamma, frechet, weibull, poisson, negative
binomial, geometric, and unspecified lognormal, and [ — 30, p + 30] for gumbel and unspecified normal.
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3.2 Vector Parameter Study

The vector parameter study computes response data sets at selected intervals along an n-dimensional vector in
parameter space. This capability encompasses both single-coordinate parameter studies (to study the effect of
a single variable on a response set) as well as multiple coordinate vector studies (to investigate the response
variations along some arbitrary vector; e.g., to investigate a search direction failure).

Dakota’s vector parameter study includes two possible specification formulations which are used in conjunction
with the Initial Values (see Section 3.1.1) to define the vector and steps of the parameter study:

final_point (vector of reals) and num_steps (integer)
step_vector (vector of reals) and num_steps (integer)

In both of these cases, the Initial Values are used as the parameter study starting point and the specification
selection above defines the orientation of the vector and the increments to be evaluated along the vector. In
the former case, the vector from initial to final point is partitioned by num_steps, and in the latter case, the
step_vector is added num_steps times. In the case of discrete range variables, both final_point and
step_vector are specified in the actual values; and in the case of discrete sets (integer or real), final_point
is specified in the actual values but step_vector must instead specify index offsets for the (ordered, unique)
set. In all cases, the number of evaluations is num_steps+1. Two examples are included below:

Three continuous parameters with initial values of (1.0, 1.0, 1.0), num_steps =4, and either final point =
(1.0,2.0,1.0) or step_vector =(0, .25, 0):

Parameters for function evaluation 1:
1.0000000000e+00 c1
1.0000000000e+00 c2
1.0000000000e+00 c3

Parameters for function evaluation 2:
1.0000000000e+00 c1
1.2500000000e+00 c2
1.0000000000e+00 c3

Parameters for function evaluation 3:
1.0000000000e+00 c1
1.5000000000e+00 c2
1.0000000000e+00 c3

Parameters for function evaluation 4:
1.0000000000e+00 c1
1.7500000000e+00 c2
1.0000000000e+00 c3

Parameters for function evaluation 5:
1.0000000000e+00 c1
2.0000000000e+00 c2
1.0000000000e+00 c3

Two continuous parameters with initial values of (1.0, 1.0), one discrete range parameter with initial value of 5,
one discrete real set parameter with set values of (10., 12., 18., 30., 50.) and initial value of 10., num_steps =4,
and either final point =(2.0, 1.4, 13,50.) or step_vector = (.25, .1,2, 1):

Parameters for function evaluation 1:
1.0000000000e+00 c1
1.0000000000e+00 c2

5 dil
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1.0000000000e+01 drl
Parameters for function evaluation 2:
1.2500000000e+00 c1
1.1000000000e+00 c2
7 dil
1.2000000000e+01 dril
Parameters for function evaluation 3:
1.5000000000e+00 c1
1.2000000000e+00 c2
9 dil
1.8000000000e+01 drl
Parameters for function evaluation 4:
1.7500000000e+00 c1
1.3000000000e+00 c2
11 di1l
3.0000000000e+01 drl
Parameters for function evaluation 5:
2.0000000000e+00 c1
1.4000000000e+00 c2
13 di1l
5.0000000000e+01 drl

An example using a vector parameter study is described in Section 3.7.

3.3 List Parameter Study

The list parameter study computes response data sets at selected points in parameter space. These points are
explicitly specified by the user and are not confined to lie on any line or surface. Thus, this parameter study
provides a general facility that supports the case where the desired set of points to evaluate does not fit the
prescribed structure of the vector, centered, or multidimensional parameter studies.

The user input consists of a 1ist_of_points specification which lists the requested parameter sets in succes-
sion. The list parameter study simply performs a simulation for the first parameter set (the first n entries in the
list), followed by a simulation for the next parameter set (the next n entries), and so on, until the list of points has
been exhausted. Since the Initial Values will not be used, they need not be specified. In the case of discrete range
or discrete set variables, list values are specified using the actual values (not set indices).

An example specification that would result in the same parameter sets as in the second example in Section 3.2
would be:

list_of_points = 1.0 1.0 5 10.
1.25 1.1 7 12.
1.5 1.2 9 18.
1.75 1.3 11 30.
2.0 1.4 13 50.

3.4 Centered Parameter Study

The centered parameter study executes multiple coordinate-based parameter studies, one per parameter, centered
about the specified Initial Values. This is useful for investigation of function contours in the vicinity of a specific
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point. For example, after computing an optimum design, this capability could be used for post-optimality analysis
in verifying that the computed solution is actually at a minimum or constraint boundary and in investigating the
shape of this minimum or constraint boundary.

This method requires step_vector (list of reals) and steps_per_variable (list of integers) specifications,
where the former specifies the size of the increments per variable (employed sequentially, not all at once as
for the vector study in Section 3.2) and the latter specifies the number of increments per variable (employed
sequentially, not all at once) for each of the positive and negative step directions. As for the vector study described
in Section 3.2, step_vector includes actual variable steps for continuous and discrete range variables, but
employs index offsets for discrete set variables (integer or real).

For example, with Initial Values of (1.0, 1.0), a step_vector of (0.1, 0.1), and a steps_per_variable of
(2, 2), the center point is evaluated followed by four function evaluations (two negative deltas and two positive
deltas) per variable:

Parameters for function evaluation 1:
1.0000000000e+00 d1
1.0000000000e+00 dz

Parameters for function evaluation 2:
8.0000000000e-01 d1
1.0000000000e+00 dz

Parameters for function evaluation 3:
9.0000000000e-01 d1
1.0000000000e+00 dz

Parameters for function evaluation 4:
1.1000000000e+00 d1
1.0000000000e+00 dz

Parameters for function evaluation 5:
1.2000000000e+00 d1
1.0000000000e+00 dz

Parameters for function evaluation 6:
1.0000000000e+00 d1
8.0000000000e-01 d2

Parameters for function evaluation 7:
1.0000000000e+00 d1
9.0000000000e-01 d2

Parameters for function evaluation 8:
1.0000000000e+00 d1
1.1000000000e+00 dz

Parameters for function evaluation 9:
1.0000000000e+00 d1
1.2000000000e+00 dz

This set of points in parameter space is depicted in Figure 3.1.

3.5 Multidimensional Parameter Study

The multidimensional parameter study computes response data sets for an n-dimensional hypergrid of points.
Each variable is partitioned into equally spaced intervals between its upper and lower bounds (see Section 3.1.2),
and each combination of the values defined by these partitions is evaluated. As for the vector and centered studies
described in Sections 3.2 and 3.4, partitioning occurs using the actual variable values for continuous and discrete
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Figure 3.1: Example centered parameter study.

range variables, but occurs within the space of valid indices for discrete set variables (integer or real). The number
of function evaluations performed in the study is:

n

H(partitionsi +1) 3.1

i=1

The partitions information is specified using the partitions specification, which provides an integer list of the
number of partitions for each variable (i.e., partitions;). Since the Initial Values will not be used, they need
not be specified.

In a two variable example problem with d1 € [0,2] and d2 € [0,3] (as defined by the upper and lower bounds
from the variables specification) and with partitions =(2,3), the interval [0,2] is divided into two equal-sized
partitions and the interval [0,3] is divided into three equal-sized partitions. This two-dimensional grid, shown in
Figure 3.2, would result in the following twelve function evaluations:

Parameters for function evaluation 1:
0.0000000000e+00 di1
0.0000000000e+00 d2

Parameters for function evaluation 2:
1.0000000000e+00 di
0.0000000000e+00 d2

Parameters for function evaluation 3:
2.0000000000e+00 di
0.0000000000e+00 d2

Parameters for function evaluation 4:
0.0000000000e+00 di1
1.0000000000e+00 d2

Parameters for function evaluation 5:
1.0000000000e+00 di
1.0000000000e+00 d2

Parameters for function evaluation 6:
2.0000000000e+00 di1
1.0000000000e+00 d2

Parameters for function evaluation 7:
0.0000000000e+00 d1
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Figure 3.2: Example multidimensional parameter study

2.0000000000e+00 d2
Parameters for function evaluation 8:
1.0000000000e+00 d1
2.0000000000e+00 d2
Parameters for function evaluation 9:
2.0000000000e+00 d1
2.0000000000e+00 d2
Parameters for function evaluation 10:
0.0000000000e+00 d1
3.0000000000e+00 d2
Parameters for function evaluation 11:
1.0000000000e+00 d1
3.0000000000e+00 d2
Parameters for function evaluation 12:
2.0000000000e+00 d1
3.0000000000e+00 d2

The first example shown in this User’s Manual is a multi-dimensional parameter study. See Section 2.3.2.

3.6 Parameter Study Usage Guidelines

Parameter studies, classical design of experiments (DOE), design/analysis of computer experiments (DACE), and
sampling methods share the purpose of exploring the parameter space. Parameter Studies are recommended for
simple studies with defined, repetative structure. A local sensitivity analysis or an assessment of the smoothness
of a response function is best addressed with a vector or centered parameter study. A multi-dimensional parameter
study may be used to generate grid points for plotting response surfaces. For guidance on DACE and sampling
methods, in contrast to parameter studies, see Section 4.7 and especially Table 4.4, which clarifies the different
purposes of the method types.
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3.7 Example: Vector Parameter Study with Rosenbrock

This section demonstrates a vector parameter study on the Rosenbrock test function described in Section 2.3.1.
An example of multidimensional parameter study is shown in Section 2.3.2.

A vector parameter study is a study between any two design points in an n-dimensional parameter space. An input
file for the vector parameter study is shown in Figure 3.3. The primary differences between this input file and the
input file for the multidimensional parameter study are found in the variables and method sections. In the variables
section, the keywords for the bounds are removed and replaced with the keyword initial_point that specifies
the starting point for the parameter study. In the method section, the vector_parameter_study keyword
is used. The final_point keyword indicates the stopping point for the parameter study, and num_steps
specifies the number of steps taken between the initial and final points in the parameter study.

# Dakota Input File: rosen_ps_vector.in
strategy
graphics
tabular_graphics_data
tabular_graphics_file = ’'rosen_ps_vector.dat’
single_method

method
vector_parameter_study
final point = 1.1 1.3
num_steps = 10

model
single

variables
continuous_design = 2
initial_point -0.3 0.2
descriptors rx1’ "x2"

interface
analysis_driver = ’rosenbrock’
direct

responses
objective_functions = 1
no_gradients
no_hessians

Figure 3.3: Rosenbrock vector parameter study example: the Dakota input file - see
Dakota/examples/users/rosen_ps_vector.in

Figure 3.4(a) shows the graphics output created by Dakota. For this study, the simple Dakota graphics are more
useful for visualizing the results. Figure 3.4(b) shows the locations of the 11 sample points generated in this study.
It is evident from these figures that the parameter study starts within the banana-shaped valley, marches up the
side of the hill, and then returns to the valley.
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Figure 3.4: Rosenbrock vector parameter study example: (a) screen capture of the Dakota graphics and (b)

location of the design points (dots) evaluated.
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Chapter 4

Design of Experiments Capabilities

4.1 Overview

Classical design of experiments (DoE) methods and the more modern design and analysis of computer experi-
ments (DACE) methods are both techniques which seek to extract as much trend data from a parameter space as
possible using a limited number of sample points. Classical DoE techniques arose from technical disciplines that
assumed some randomness and nonrepeatability in field experiments (e.g., agricultural yield, experimental chem-
istry). DoE approaches such as central composite design, Box-Behnken design, and full and fractional factorial
design generally put sample points at the extremes of the parameter space, since these designs offer more reliable
trend extraction in the presence of nonrepeatability. DACE methods are distinguished from DoE methods in that
the nonrepeatability component can be omitted since computer simulations are involved. In these cases, space
filling designs such as orthogonal array sampling and Latin hypercube sampling are more commonly employed
in order to accurately extract trend information. Quasi-Monte Carlo sampling techniques which are constructed
to fill the unit hypercube with good uniformity of coverage can also be used for DACE.

Dakota supports both DoE and DACE techniques. In common usage, only parameter bounds are used in selecting
the samples within the parameter space. Thus, DoE and DACE can be viewed as special cases of the more
general probabilistic sampling for uncertainty quantification (see following section), in which the DoE/DACE
parameters are treated as having uniform probability distributions. The DoE/DACE techniques are commonly
used for investigation of global response trends, identification of significant parameters (e.g., main effects), and
as data generation methods for building response surface approximations.

Dakota includes several approaches sampling and design of experiments, all implemented in included third-party
software libraries. LHS (Latin hypercube sampling) [ 13] is a general-purpose sampling package developed at
Sandia that has been used by the DOE national labs for several decades. DDACE (distributed design and analysis
for computer experiments) is a more recent package for computer experiments developed at Sandia Labs [119].
DDACE provides the capability for generating orthogonal arrays, Box-Behnken designs, Central Composite de-
signs, and random designs. The FSUDace (Florida State University’s Design and Analysis of Computer Ex-
periments) package provides the following sampling techniques: quasi-Monte Carlo sampling based on Halton
or Hammersley sequences, and Centroidal Voronoi Tessellation. Lawrence Livermore National Lab’s PSUADE
(Problem Solving Environment for Uncertainty Analysis and Design Exploration) [ 1 8] includes several methods
for model exploration, but only the Morris screening method is exposed in Dakota.

This chapter describes DDACE, FSUDace, and PSUADE, with a focus on designing computer experiments. Latin
Hypercube Sampling, also used in uncertainty quantification, is discussed in Section 5.2.
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4.2 Design of Computer Experiments

What distinguishes design of computer experiments? Computer experiments are often different from physical
experiments, such as those performed in agriculture, manufacturing, or biology. In physical experiments, one
often applies the same freatment or factor level in an experiment several times to get an understanding of the
variability of the output when that treatment is applied. For example, in an agricultural experiment, several fields
(e.g., 8) may be subject to a low level of fertilizer and the same number of fields may be subject to a high level of
fertilizer to see if the amount of fertilizer has a significant effect on crop output. In addition, one is often interested
in the variability of the output within a treatment group: is the variability of the crop yields in the low fertilizer
group much higher than that in the high fertilizer group, or not?

In physical experiments, the process we are trying to examine is stochastic: that is, the same treatment may result
in different outcomes. By contrast, in computer experiments, often we have a deterministic code. If we run the
code with a particular set of input parameters, the code will always produce the same output. There certainly
are stochastic codes, but the main focus of computer experimentation has been on deterministic codes. Thus, in
computer experiments we often do not have the need to do replicates (running the code with the exact same input
parameters several times to see differences in outputs). Instead, a major concern in computer experiments is to
create an experimental design which can sample a high-dimensional space in a representative way with a minimum
number of samples. The number of factors or parameters that we wish to explore in computer experiments is
usually much higher than physical experiments. In physical experiments, one may be interested in varying a few
parameters, usually five or less, while in computer experiments we often have dozens of parameters of interest.
Choosing the levels of these parameters so that the samples adequately explore the input space is a challenging
problem. There are many experimental designs and sampling methods which address the issue of adequate and
representative sample selection.

There are many goals of running a computer experiment: one may want to explore the input domain or the
design space and get a better understanding of the range in the outputs for a particular domain. Another objective
is to determine which inputs have the most influence on the output, or how changes in the inputs change the
output. This is usually called sensitivity analysis. Another goal is to use the sampled input points and their
corresponding output to create a response surface approximation for the computer code. The response surface
approximation (e.g., a polynomial regression model, a Gaussian-process/Kriging model, a neural net) can then
be used to emulate the computer code. Constructing a response surface approximation is particularly important
for applications where running a computational model is extremely expensive: the computer model may take 10
or 20 hours to run on a high performance machine, whereas the response surface model may only take a few
seconds. Thus, one often optimizes the response surface model or uses it within a framework such as surrogate-
based optimization. Response surface models are also valuable in cases where the gradient (first derivative) and/or
Hessian (second derivative) information required by optimization techniques are either not available, expensive
to compute, or inaccurate because the derivatives are poorly approximated or the function evaluation is itself
noisy due to roundoff errors. Furthermore, many optimization methods require a good initial point to ensure
fast convergence or to converge to good solutions (e.g. for problems with multiple local minima). Under these
circumstances, a good design of computer experiment framework coupled with response surface approximations
can offer great advantages.

In addition to the sensitivity analysis and response surface modeling mentioned above, we also may want to do
uncertainty quantification on a computer model. Uncertainty quantification (UQ) refers to taking a particular set
of distributions on the inputs, and propagating them through the model to obtain a distribution on the outputs. For
example, if input parameter A follows a normal with mean 5 and variance 1, the computer produces a random
draw from that distribution. If input parameter B follows a weibull distribution with alpha = 0.5 and beta = 1, the
computer produces a random draw from that distribution. When all of the uncertain variables have samples drawn
from their input distributions, we run the model with the sampled values as inputs. We do this repeatedly to build
up a distribution of outputs. We can then use the cumulative distribution function of the output to ask questions
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such as: what is the probability that the output is greater than 10? What is the 99th percentile of the output?

Note that sampling-based uncertainty quantification and design of computer experiments are very similar. There
is significant overlap in the purpose and methods used for UQ and for DACE. We have attempted to delineate
the differences within Dakota as follows: we use the methods DDACE, FSUDACE, and PSUADE primarily for
design of experiments, where we are interested in understanding the main effects of parameters and where we
want to sample over an input domain to obtain values for constructing a response surface. We use the nondeter-
ministic sampling methods (sampling) for uncertainty quantification, where we are propagating specific input
distributions and interested in obtaining (for example) a cumulative distribution function on the output. If one
has a problem with no distributional information, we recommend starting with a design of experiments approach.
Note that DDACE, FSUDACE, and PSUADE currently do not support distributional information: they take an
upper and lower bound for each uncertain input variable and sample within that. The uncertainty quantification
methods in sampling (primarily Latin Hypercube sampling) offer the capability to sample from many distri-
butional types. The distinction between UQ and DACE is somewhat arbitrary: both approaches often can yield
insight about important parameters and both can determine sample points for response surface approximations.

Three software packages are available in Dakota for design of computer experiments, DDACE (developed at
Sandia Labs), FSUDACE (developed at Florida State University), and PSUADE (LLNL).

4.3 DDACE

The Distributed Design and Analysis of Computer Experiments (DDACE) package includes both classical design
of experiments methods [119] and stochastic sampling methods. The classical design of experiments methods
in DDACE are central composite design (CCD) and Box-Behnken (BB) sampling. A grid-based sampling (full-
factorial) method is also available. The stochastic methods are orthogonal array sampling [77] (which permits
main effects calculations), Monte Carlo (random) sampling, Latin hypercube sampling, and orthogonal array-
Latin hypercube sampling. While DDACE LHS supports variables with normal or uniform distributions, only
uniform are supported through Dakota. Also DDACE does not allow enforcement of user-specified correlation
structure among the variables.

The sampling methods in DDACE can be used alone or in conjunction with other methods. For example, DDACE
sampling can be used with both the surrogate-based optimization strategy and the optimization under uncertainty
strategy. See Figure 16.5 for an example of how the DDACE settings are used in Dakota.

The following sections provide more detail about the sampling methods available for design of experiments in
DDACE.

4.3.1 Central Composite Design

A Box-Wilson Central Composite Design, commonly called a central composite design (CCD), contains an em-
bedded factorial or fractional factorial design with center points that is augmented with a group of ’star points’
that allow estimation of curvature. If the distance from the center of the design space to a factorial point is =1 unit
for each factor, the distance from the center of the design space to a star point is +a with | « |> 1. The precise
value of o depends on certain properties desired for the design and on the number of factors involved. The CCD
design is specified in Dakota with the method command dace central_composite.

As an example, with two input variables or factors, each having two levels, the factorial design is shown in
Table 4.1 .

With a CCD, the design in Table 4.1 would be augmented with the following points shown in Table 4.2 if a = 1.3.
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Table 4.1: Simple Factorial Design

Input 1 \ Input 2

-1 -1
-1 +1
+1 -1
+1 +1

These points define a circle around the original factorial design.

Table 4.2: Additional Points to make the factorial design a CCD

Input 1 \ Input 2

0 +1.3
0 -1.3
1.3 0
-1.3 0
0 0

Note that the number of sample points specified in a CCD,samples, is a function of the number of variables in
the problem:

samples = 1 + 2% NumVar 4 2VvmVar

4.3.2 Box-Behnken Design

The Box-Behnken design is similar to a Central Composite design, with some differences. The Box-Behnken
design is a quadratic design in that it does not contain an embedded factorial or fractional factorial design. In this
design the treatment combinations are at the midpoints of edges of the process space and at the center, as compared
with CCD designs where the extra points are placed at ’star points’ on a circle outside of the process space. Box-
Behken designs are rotatable (or near rotatable) and require 3 levels of each factor. The designs have limited
capability for orthogonal blocking compared to the central composite designs. Box-Behnken requires fewer runs
than CCD for 3 factors, but this advantage goes away as the number of factors increases. The Box-Behnken design
is specified in Dakota with the method command dace box_behnken.

Note that the number of sample points specified in a Box-Behnken design, samples, is a function of the number
of variables in the problem:

samples =1+ 4 %« NumVar + (NumVar —1)/2
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4.3.3 Orthogonal Array Designs

Orthogonal array (OA) sampling is a widely used technique for running experiments and systematically testing
factor effects [65]. An orthogonal array sample can be described as a 4-tuple (m, n, s, r), where m is the number
of sample points, n is the number of input variables, s is the number of symbols, and r is the strength of the
orthogonal array. The number of sample points, m, must be a multiple of the number of symbols, s. The number
of symbols refers to the number of levels per input variable. The strength refers to the number of columns where
we are guaranteed to see all the possibilities an equal number of times.

For example, Table 4.3 shows an orthogonal array of strength 2 for m = 8, with 7 variables:

Table 4.3: Orthogonal Array for Seven Variables

Input 1 | Input2 [ Input3 | Input4 | Input5 | Input 6 [ Input7

0 0 0 0 0 0 0
0 0 0 1 1 1 1
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 1 0 1 0 1
1 0 1 1 0 1 0
1 1 0 0 1 1 0
1 1 0 1 0 0 1

If one picks any two columns, say the first and the third, note that each of the four possible rows we might see
there, 00,0 1, 1 0, 1 1, appears exactly the same number of times, twice in this case.

DDACE creates orthogonal arrays of strength 2. Further, the OAs generated by DDACE do not treat the factor
levels as one fixed value (0 or 1 in the above example). Instead, once a level for a variable is determined in the
array, DDACE samples a random variable from within that level. The orthogonal array design is specified in
Dakota with the method command dace oas.

The orthogonal array method in DDACE is the only method that allows for the calculation of main effects, speci-
fied with the command main_effects. Main effects is a sensitivity analysis method which identifies the input
variables that have the most influence on the output. In main effects, the idea is to look at the mean of the response
function when variable A (for example) is at level 1 vs. when variable A is at level 2 or level 3. If these mean
responses of the output are statistically significantly different at different levels of variable A, this is an indication
that variable A has a significant effect on the response. The orthogonality of the columns is critical in performing
main effects analysis, since the column orthogonality means that the effects of the other variables ’cancel out’
when looking at the overall effect from one variable at its different levels. There are ways of developing orthog-
onal arrays to calculate higher order interactions, such as two-way interactions (what is the influence of Variable
A * Variable B on the output?), but this is not available in DDACE currently. At present, one way interactions
are supported in the calculation of orthogonal array main effects within DDACE. The main effects are presented
as a series of ANOVA tables. For each objective function and constraint, the decomposition of variance of that
objective or constraint is presented as a function of the input variables. The p-value in the ANOVA table is used
to indicate if the input factor is significant. The p-value is the probability that you would have obtained samples
more extreme than you did if the input factor has no effect on the response. For example, if you set a level of
significance at 0.05 for your p-value, and the actual p-value is 0.03, then the input factor has a significant effect
on the response.
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4.3.4 Grid Design

In a grid design, a grid is placed over the input variable space. This is very similar to a multi-dimensional
parameter study where the samples are taken over a set of partitions on each variable (see Section 3.5). The
main difference is that in grid sampling, a small random perturbation is added to each sample value so that the
grid points are not on a perfect grid. This is done to help capture certain features in the output such as periodic
functions. A purely structured grid, with the samples exactly on the grid points, has the disadvantage of not being
able to capture important features such as periodic functions with relatively high frequency (due to aliasing).
Adding a random perturbation to the grid samples helps remedy this problem.

Another disadvantage with grid sampling is that the number of sample points required depends exponentially on
the input dimensions. In grid sampling, the number of samples is the number of symbols (grid partitions) raised
to the number of variables. For example, if there are 2 variables, each with 5 partitions, the number of samples
would be 52. In this case, doubling the number of variables squares the sample size. The grid design is specified
in Dakota with the method command dace grid.

4.3.5 Monte Carlo Design

Monte Carlo designs simply involve pure Monte-Carlo random sampling from uniform distributions between the
lower and upper bounds on each of the input variables. Monte Carlo designs, specified by dace random, are a
way to generate a set of random samples over an input domain.

4.3.6 LHS Design

DDACE offers the capability to generate Latin Hypercube designs. For more information on Latin Hypercube
sampling, see Section 5.2. Note that the version of LHS in DDACE generates uniform samples (uniform between
the variable bounds). The version of LHS offered with nondeterministic sampling can generate LHS samples
according to a number of distribution types, including normal, lognormal, weibull, beta, etc. To specify the
DDACE version of LHS, use the method command dace 1hs.

4.3.7 OA-LHS Design

DDACE offers a hybrid design which is combination of an orthogonal array and a Latin Hypercube sample.
This design is specified with the method command dace oa-lhs. This design has the advantages of both
orthogonality of the inputs as well as stratification of the samples (see [95]).

4.4 FSUDace

The Florida State University Design and Analysis of Computer Experiments (FSUDace) package provides quasi-
Monte Carlo sampling (Halton and Hammersley) and Centroidal Voronoi Tessellation (CVT) methods. All three
methods natively generate sets of uniform random variables on the interval [0, 1] (or in Dakota, on user-specified
uniform intervals).

The quasi-Monte Carlo and CVT methods are designed with the goal of low discrepancy. Discrepancy refers to the
nonuniformity of the sample points within the unit hypercube. Low discrepancy sequences tend to cover the unit
hypercube reasonably uniformly. Quasi-Monte Carlo methods produce low discrepancy sequences, especially if
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one is interested in the uniformity of projections of the point sets onto lower dimensional faces of the hypercube
(usually 1-D: how well do the marginal distributions approximate a uniform?) CVT does very well volumetrically:
it spaces the points fairly equally throughout the space, so that the points cover the region and are isotropically
distributed with no directional bias in the point placement. There are various measures of volumetric uniformity
which take into account the distances between pairs of points, regularity measures, etc. Note that CVT does not
produce low-discrepancy sequences in lower dimensions, however: the lower-dimension (such as 1-D) projections
of CVT can have high discrepancy.

The quasi-Monte Carlo sequences of Halton and Hammersley are deterministic sequences determined by a set of
prime bases. A Halton design is specified in Dakota with the method command fsu_quasi.-mc halton, and
the Hammersley design is specified with the command fsu_quasi.mc hammersley. For more details about
the input specification, see the Reference Manual. CVT points tend to arrange themselves in a pattern of cells that
are roughly the same shape. To produce CVT points, an almost arbitrary set of initial points is chosen, and then
an internal set of iterations is carried out. These iterations repeatedly replace the current set of sample points by
an estimate of the centroids of the corresponding Voronoi subregions [23]. A CVT design is specified in Dakota
with the method command fsu_cvt.

The methods in FSUDace are useful for design of experiments because they provide good coverage of the input
space, thus allowing global sensitivity analysis.

4.5 PSUADE MOAT

PSUADE (Problem Solving Environment for Uncertainty Analysis and Design Exploration) is a Lawrence Liv-
ermore National Laboratory tool for metamodeling, sensitivity analysis, uncertainty quantification, and optimiza-
tion. Its features include non-intrusive and parallel function evaluations, sampling and analysis methods, an
integrated design and analysis framework, global optimization, numerical integration, response surfaces (MARS
and higher order regressions), graphical output with Pgplot or Matlab, and fault tolerance [ | | 8]. Dakota includes a
prototype interface to its Morris One-At-A-Time (MOAT) screening method, a valuable tool for global sensitivity
(including interaction) analysis.

The Morris One-At-A-Time method, originally proposed by M. D. Morris [88], is a screening method, designed
to explore a computational model to distinguish between input variables that have negligible, linear and additive,
or nonlinear or interaction effects on the output. The computer experiments performed consist of individually
randomized designs which vary one input factor at a time to create a sample of its elementary effects.

With MOAT, each dimension of a k—dimensional input space is uniformly partitioned into p levels, creating a grid
of p* points x € R¥ at which evaluations of the model y(x) might take place. An elementary effect corresponding
to input ¢ is computed by a forward difference

y(x+ Aei) —y(x)

d’i (X) = A )

4.1)

where ¢; is the i" coordinate vector, and the step A is typically taken to be large (this is not intended to be a
local derivative approximation). In the present implementation of MOAT, for an input variable scaled to [0, 1],

A= 2(%1), so the step used to find elementary effects is slightly larger than half the input range.

The distribution of elementary effects d; over the input space characterizes the effect of input ¢ on the output of
interest. After generating r samples from this distribution, their mean,

T

1 (9)
i=- > d, 42
r = v “4.2)
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# Dakota Input File: morris_ps_moat.in
strategy
single_method

method
psuade_moat
samples = 84
partitions = 3
seed = 500

variables
continuous_design = 2
lower_bounds = 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
upper_bounds = 1.01.01.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.01.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

interface
fork asynchronous evaluation_concurrency = 5
analysis_driver = 'morris’

responses
objective_functions = 1
no_gradients
no_hessians

Figure 4.1: Dakota input file showing the Morris One-at-a-Time method -  see
Dakota/examples/users/morris_ps.moat.in

modified mean

pi==Y"1d), 4.3)

(using absolute value) and standard deviation

T

0 = % > (4 i) : (4.4)

=1

are computed for each input . The mean and modified mean give an indication of the overall effect of an input
on the output. Standard deviation indicates nonlinear effects or interactions, since it is an indicator of elementary
effects varying throughout the input space.

The MOAT method is selected with method keyword psuade _moat as shown in the sample Dakota input deck in
Figure 4.1. The number of samples (samples) must be a positive integer multiple of (number of continuous de-
sign variables k + 1) and will be automatically adjusted if misspecified. The number of partitions (partitions)
applies to each variable being studied and must be odd (the number of MOAT levels p per variable is partitions
+ 1, similar to Dakota multidimensional parameter studies). This will also be adjusted at runtime as necessary.
Finite user-specified lower and upper bounds are required and will be scaled as needed by the method. For more
information on use of MOAT sampling, see the Morris example in Section 21.8, or Saltelli, et al. [100].
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4.6 Sensitivity Analysis

4.6.1 Sensitivity Analysis Overview

In many engineering design applications, sensitivity analysis techniques and parameter study methods are useful in
identifying which of the design parameters have the most influence on the response quantities. This information is
helpful prior to an optimization study as it can be used to remove design parameters that do not strongly influence
the responses. In addition, these techniques can provide assessments as to the behavior of the response functions
(smooth or nonsmooth, unimodal or multimodal) which can be invaluable in algorithm selection for optimization,
uncertainty quantification, and related methods. In a post-optimization role, sensitivity information is useful is
determining whether or not the response functions are robust with respect to small changes in the optimum design
point.

In some instances, the term sensitivity analysis is used in a local sense to denote the computation of response
derivatives at a point. These derivatives are then used in a simple analysis to make design decisions. Dakota
supports this type of study through numerical finite-differencing or retrieval of analytic gradients computed within
the analysis code. The desired gradient data is specified in the responses section of the Dakota input file and
the collection of this data at a single point is accomplished through a parameter study method with no steps.
This approach to sensitivity analysis should be distinguished from the activity of augmenting analysis codes to
internally compute derivatives using techniques such as direct or adjoint differentiation, automatic differentiation
(e.g., ADIFOR), or complex step modifications. These sensitivity augmentation activities are completely separate
from Dakota and are outside the scope of this manual. However, once completed, Dakota can utilize these analytic
gradients to perform optimization, uncertainty quantification, and related studies more reliably and efficiently.

In other instances, the term sensitivity analysis is used in a more global sense to denote the investigation of
variability in the response functions. Dakota supports this type of study through computation of response data
sets (typically function values only, but all data sets are supported) at a series of points in the parameter space.
The series of points is defined using either a vector, list, centered, or multidimensional parameter study method.
For example, a set of closely-spaced points in a vector parameter study could be used to assess the smoothness of
the response functions in order to select a finite difference step size, and a set of more widely-spaced points in a
centered or multidimensional parameter study could be used to determine whether the response function variation
is likely to be unimodal or multimodal. See Chapter 3 for additional information on these methods. These more
global approaches to sensitivity analysis can be used to obtain trend data even in situations when gradients are
unavailable or unreliable, and they are conceptually similar to the design of experiments methods and sampling
approaches to uncertainty quantification described in the following sections.

4.6.2 Assessing Sensitivity with DACE

Like parameter studies (see Chapter 3), the DACE techniques are useful for characterizing the behavior of the
response functions of interest through the parameter ranges of interest. In addition to direct interrogation and
visualization of the sampling results, a number of techniques have been developed for assessing the parameters
which are most influential in the observed variability in the response functions. One example of this is the well-
known technique of scatter plots, in which the set of samples is projected down and plotted against one parameter
dimension, for each parameter in turn. Scatter plots with a uniformly distributed cloud of points indicate parame-
ters with little influence on the results, whereas scatter plots with a defined shape to the cloud indicate parameters
which are more significant. Related techniques include analysis of variance (ANOVA) [89] and main effects
analysis, in which the parameters which have the greatest influence on the results are identified from sampling
results. Scatter plots and ANOVA may be accessed through import of Dakota tabular results (see Section 14.3)
into external statistical analysis programs such as S-plus, Minitab, etc.
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Running any of the design of experiments or sampling methods allows the user to save the results in a tabular
data file, which then can be read into a spreadsheet or statistical package for further analysis. In addition, we have
provided some functions to help determine the most important variables.

We take the definition of uncertainty analysis from [100]: “The study of how uncertainty in the output of a model
can be apportioned to different sources of uncertainty in the model input.”

As a default, Dakota provides correlation analyses when running LHS. Correlation tables are printed with the
simple, partial, and rank correlations between inputs and outputs. These can be useful to get a quick sense of how
correlated the inputs are to each other, and how correlated various outputs are to inputs. The correlation analyses
are explained further in Chapter 5.2.

We also have the capability to calculate sensitivity indices through Variance-based Decomposition (VBD). Variance-
based decomposition is a global sensitivity method that summarizes how the uncertainty in model output can be
apportioned to uncertainty in individual input variables. VBD uses two primary measures, the main effect sen-
sitivity index .S; and the total effect index 7;. The main effect sensitivity index corresponds to the fraction of
the uncertainty in the output, Y, that can be attributed to input x; alone. The total effects index corresponds to
the fraction of the uncertainty in the output, Y, that can be attributed to input x; and its interactions with other
variables. The main effect sensitivity index compares the variance of the conditional expectation Var,, [E(Y|z;)]
against the total variance Var(Y"). Formulas for the indices are:

Si Var(Y)

4.5)

and
_ EWVar(Y|r_;)) _ Var(Y) — Var(E[Y|z_;])

L= Var(Y) Var(Y)

(4.6)

where Y = f(x)and _; = (1, 0oy Tim1, Tit1yeery Ton)-

The calculation of \S; and T; requires the evaluation of m-dimensional integrals which are typically approximated
by Monte-Carlo sampling. More details on the calculations and interpretation of the sensitivity indices can be
found in [100]. In Dakota version 5.1, we have improved calculations for the calculation of the .S; and T} indices
when using sampling. The implementation details of these calculatiosn are provided in [129]. VBD can be
specified for any of the sampling or DACE methods using the command variance based_decomposition.
Note that VBD is extremely computationally intensive when using sampling since replicated sets of sample values
are evaluated. If the user specified a number of samples, /N, and a number of nondeterministic variables, M,
variance-based decomposition requires the evaluation of N (M + 2) samples. To obtain sensitivity indices that
are reasonably accurate, we recommend that NV, the number of samples, be at least one hundred and preferably
several hundred or thousands. Because of the computational cost, variance-based decomposition is turned off
as a default for sampling or DACE. Another alternative, however, is to obtain these indices using one of the
stochastic expansion methods described in Section 5.4. The calculation of the indices using expansion methods is
much more efficient since the VBD indices are analytic functions of the coefficients in the stochastic expansion.
The paper by Weirs et al. [129] compares different methods for calculating the sensitivity indices for nonlinear
problems with significant interaction effects.

In terms of interpretation of the sensitivity indices, a larger value of the sensitivity index, .S;, means that the
uncertainty in the input variable ¢ has a larger effect on the variance of the output. Note that the sum of the main
effect indices will be less than or equal to one. If the sum of the main effect indices is much less than one, it
indicates that there are significant two-way, three-way, or higher order interactions that contribute significantly to
the variance. There is no requirement that the sum of the total effect indices is one: in most cases, the sum of the
total effect indices will be greater than one. An example of the Main and Total effects indices as calculated by
Dakota using sampling is shown in Figure 4.2
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Global sensitivity indices for each response function:
response_fn_1 Sobol indices:
Main Total
4.7508913283e-01 5.3242162037e-01 uuv_1
3.8112392892e-01 4.9912486515e-01 uuv_2

Figure 4.2: Dakota output for Variance-based Decomposition

Finally, we have the capability to calculate a set of quality metrics for a particular input sample. These quality
metrics measure various aspects relating to the volumetric spacing of the samples: are the points equally spaced,
do they cover the region, are they isotropically distributed, do they have directional bias, etc.? The quality metrics
are explained in more detail in the Reference Manual.

4.7 DOE Usage Guidelines

Parameter studies, classical design of experiments (DOE), design/analysis of computer experiments (DACE), and
sampling methods share the purpose of exploring the parameter space. When a global space-filling set of samples
is desired, then the DOE, DACE, and sampling methods are recommended. These techniques are useful for scatter
plot and variance analysis as well as surrogate model construction.

The distinction between DOE and DACE methods is that the former are intended for physical experiments con-
taining an element of nonrepeatability (and therefore tend to place samples at the extreme parameter vertices),
whereas the latter are intended for repeatable computer experiments and are more space-filling in nature.

The distinction between DOE/DACE and sampling is drawn based on the distributions of the parameters. DOE/DACE
methods typically assume uniform distributions, whereas the sampling approaches in Dakota support a broad
range of probability distributions.

To use sampling in design of experiments mode (as opposed to uncertainty quantification mode), an active view
override (e.g., active all) can be included in the variables specification (see Section 10.5.1) of the Dakota
input file.

Design of experiments method selection recommendations are summarized in Table 4.4.
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Table 4.4: Guidelines for selection of parameter study, DOE, DACE, and sampling methods.

Method
Classification

Applications

Applicable Methods

parameter study

sensitivity analysis,
directed parameter space investigations

centered_parameter_study,
list_parameter_study,
multidim_parameter_study,
vector_parameter_study

classical design
of experiments

physical experiments
(parameters are uniformly distributed)

dace (box_behnken,
central_composite)

design of computer

variance analysis,

dace (grid, random, oas, lhs, oa_lhs),

experiments space filling designs fsu_quasi_mc (halton, hammersley),
(parameters are uniformly distributed) fsu_cvt, psuade_moat
sampling space filling designs sampling (Monte Carlo or LHS)

(parameters have general probability distributions)

with optional active view override
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Chapter 5

Uncertainty Quantification Capabilities

5.1 Overview

At a high level, uncertainty quantification (UQ) or nondeterministic analysis is the process of characterizing input
uncertainties, forward propagating these uncertainties through a computational model, and performing statisti-
cal or interval assessments on the resulting responses. This process determines the effect of uncertainties and
assumptions on model outputs or results. In Dakota, uncertainty quantification methods specifically focus on
the forward propagation part of the process, where probabilistic or interval information on parametric inputs are
mapped through the computational model to assess statistics or intervals on outputs. For an overview of these
approaches for engineering applications, consult [63].

UQ is related to sensitivity analysis in that the common goal is to gain an understanding of how variations in
the parameters affect the response functions of the engineering design problem. However, for UQ, some or all
of the components of the parameter vector, are considered to be uncertain as specified by particular probability
distributions (e.g., normal, exponential, extreme value), or other uncertainty structures. By assigning specific
distributional structure to the inputs, distributional structure for the outputs (i.e, response statistics) can be inferred.
This migrates from an analysis that is more gualitative in nature, in the case of sensitivity analysis, to an analysis
that is more rigorously quantitative.

UQ methods are often distinguished by their ability to propagate aleatory or epistemic input uncertainty charac-
terizations, where aleatory uncertainties are irreducible variabilities inherent in nature and epistemic uncertainties
are reducible uncertainties resulting from a lack of knowledge. Since sufficient data is generally available for
aleatory uncertainties, probabilistic methods are commonly used for computing response distribution statistics
based on input probability distribution specifications. Conversely, for epistemic uncertainties, any use of proba-
bility distributions is based on subjective knowledge rather than objective data, and we may alternatively explore
nonprobabilistic methods based on interval specifications.

5.1.1 Summary of Dakota UQ Methods

Dakota contains capabilities for performing nondeterministic analysis with both types of input uncertainty. These
UQ methods have been developed by Sandia Labs, in conjunction with collaborators in academia [42, 43, 25, ].

The aleatory UQ methods in Dakota include various sampling-based approaches (e.g., Monte Carlo and Latin Hy-
percube sampling), local and global reliability methods, and stochastic expansion (polynomial chaos expansions
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and stochastic collocation) approaches. The epistemic UQ methods include local and global interval analysis and
Dempster-Shafer evidence theory. These are summarized below and then described in more depth in subsequent
sections of this chapter. Dakota additionally supports mixed aleatory/epistemic UQ via interval-valued probabil-
ity, second-order probability, and Dempster-Shafer theory of evidence. These involve advanced model recursions
and are described in Section 16.1.

LHS (Latin Hypercube Sampling): This package provides both Monte Carlo (random) sampling and Latin
Hypercube sampling methods, which can be used with probabilistic variables in Dakota that have the following
distributions: normal, lognormal, uniform, loguniform, triangular, exponential, beta, gamma, gumbel, frechet,
weibull, poisson, binomial, negative binomial, geometric, hypergeometric, and user-supplied histograms. In addi-
tion, LHS accounts for correlations among the variables [71], which can be used to accommodate a user-supplied
correlation matrix or to minimize correlation when a correlation matrix is not supplied. In addition to a standard
sampling study, we support the capability to perform “incremental” LHS, where a user can specify an initial LHS
study of N samples, and then re-run an additional incremental study which will double the number of samples (to
2N, with the first N being carried from the initial study). The full incremental sample of size 2N is also a Latin
Hypercube, with proper stratification and correlation.

Reliability Methods: This suite of methods includes both local and global reliability methods. Local methods
include first- and second-order versions of the Mean Value method (MVFOSM and MVSOSM) and a variety of
most probable point (MPP) search methods, including the Advanced Mean Value method (AMV and AMV?),
the iterated Advanced Mean Value method (AMV+ and AMV?2+), the Two-point Adaptive Nonlinearity Approx-
imation method (TANA-3), and the traditional First Order and Second Order Reliability Methods (FORM and
SORM) [63]. The MPP search methods may be used in forward (Reliability Index Approach (RIA)) or inverse
(Performance Measure Approach (PMA)) modes, as dictated by the type of level mappings. Each of the MPP
search techniques solve local optimization problems in order to locate the MPP, which is then used as the point
about which approximate probabilities are integrated (using first- or second-order integrations in combination
with refinements based on importance sampling). Global reliability methods are designed to handle nonsmooth
and multimodal failure surfaces, by creating global approximations based on Gaussian process models. They
accurately resolve a particular contour of a response function and then estimate probabilities using multimodal
adaptive importance sampling.

Stochastic Expansion Methods: The development of these techniques mirrors that of deterministic finite element
analysis utilizing the notions of projection, orthogonality, and weak convergence [42], [43]. Rather than estimat-
ing point probabilities, they form an approximation to the functional relationship between response functions and
their random inputs, which provides a more complete uncertainty representation for use in multi-code simulations.
Expansion methods include polynomial chaos expansions (PCE), which employ multivariate orthogonal polyno-
mials that are tailored to representing particular input probability distributions, and stochastic collocation (SC),
which employs multivariate interpolation polynomials. For PCE, expansion coefficients may be evaluated using
a spectral projection approach (based on sampling, tensor-product quadrature, Smolyak sparse grid, or cubature
methods for numerical integration) or a regression approach (least squares or compressive sensing). For SC,
interpolants are formed over tensor-product or sparse grids and may be local or global, value-based or gradient-
enhanced, and nodal or hierarchical. Both sets of methods provide analytic response moments and variance-based
metrics; however, CDF/CCDF probabilities are evaluated numerically by sampling on the expansion.

Importance Sampling: Importance sampling is a method that allows one to estimate statistical quantities such
as failure probabilities in a way that is more efficient than Monte Carlo sampling. The core idea in importance
sampling is that one generates samples that are preferentially placed in important regions of the space (e.g. in
or near the failure region or user-defined region of interest), then appropriately weights the samples to obtain an
unbiased estimate of the failure probability.

Adaptive Sampling: The goal in performing adaptive sampling is to construct a surrogate model that can be used
as an accurate predictor of an expensive simulation. The aim is to build a surrogate that minimizes the error over
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the entire domain of interest using as little data as possible from the expensive simulation. The adaptive sampling
methods start with an initial LHS sample, and then adaptively choose samples that optimize a particular criteria.
For example, if a set of additional possible sample points are generated, one criteria is to pick the next sample
point as the point which maximizes the minimum distance to the existing points (maximin). Another criteria is to
pick the sample point where the surrogate indicates the most uncertainty in its prediction.

Interval Analysis: Interval analysis is often used to model epistemic uncertainty. In interval analysis, one assumes
that nothing is known about an epistemic uncertain variable except that its value lies somewhere within an interval.
In this situation, it is NOT assumed that the value has a uniform probability of occurring within the interval.
Instead, the interpretation is that any value within the interval is a possible value or a potential realization of that
variable. In interval analysis, the uncertainty quantification problem is one of determining the resulting bounds
on the output (defining the output interval) given interval bounds on the inputs. Again, any output response that
falls within the output interval is a possible output with no frequency information assigned to it.

‘We have the capability to perform interval analysis using either global or local methods. In the global approach,
one uses either a global optimization method (based on a Gaussian process surrogate model) or a sampling method
to assess the bounds. The local method uses gradient information in a derivative-based optimization approach,
using either SQP (sequential quadratic programming) or a NIP (nonlinear interior point) method to obtain bounds.

Dempster-Shafer Theory of Evidence: The objective of Evidence theory is to model the effects of epistemic
uncertainties. Epistemic uncertainty refers to the situation where one does not know enough to specify a proba-
bility distribution on a variable. Sometimes epistemic uncertainty is referred to as subjective, reducible, or lack
of knowledge uncertainty. In contrast, aleatory uncertainty refers to the situation where one does have enough
information to specify a probability distribution. In Dempster-Shafer theory of evidence, the uncertain input vari-
ables are modeled as sets of intervals. The user assigns a basic probability assignment (BPA) to each interval,
indicating how likely it is that the uncertain input falls within the interval. The intervals may be overlapping,
contiguous, or have gaps. The intervals and their associated BPAs are then propagated through the simulation
to obtain cumulative distribution functions on belief and plausibility. Belief is the lower bound on a probability
estimate that is consistent with the evidence, and plausibility is the upper bound on a probability estimate that is
consistent with the evidence. In addition to the full evidence theory structure, we have a simplified capability for
users wanting to perform pure interval analysis (e.g. what is the interval on the output given intervals on the input)
using either global or local optimization methods. Interval analysis is often used to model epistemic variables in
nested analyses, where probability theory is used to model aleatory variables.

Bayesian Calibration: In Bayesian calibration, uncertain input parameters are described by a “prior” distribution.
The priors are updated with experimental data, in a Bayesian framework that involves the experimental data and
a likelihood function which describes how well each parameter value is supported by the data. After the process
of Bayesian calibration, the prior distribution becomes a posterior distribution.

5.1.2 Variables and Responses for UQ

All the UQ methods perform a forward uncertainty propagation in which probability or interval information for
input parameters is mapped to probability or interval information for output response functions. The m functions
in the Dakota response data set are interpreted as m general response functions by the Dakota methods (with no
specific interpretation of the functions as for optimization and least squares).

Within the variables specification, uncertain variable descriptions are employed to define the parameter proba-
bility distributions (see Section 10.3). The continuous aleatory distribution types include: normal (Gaussian),
lognormal, uniform, loguniform, triangular, exponential, beta, gamma, gumbel, frechet, weibull, and histogram
bin. The discrete aleatory distribution types include: poisson, binomial, negative binomial, geometric, hyperge-
ometric, and histogram point. The epistemic distribution type is interval for continuous variables. For epistemic
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discrete variables, there are three types: integer range, integer set, and real set. When gradient and/or Hessian
information is used in an uncertainty assessment, derivative components are normally computed with respect to
the active continuous variables, which could be aleatory uncertain, epistemic uncertain, aleatory and epistemic
uncertain, or all continuous variables, depending on the active view (see Section 10.5).

5.2 Sampling Methods

Sampling techniques are selected using the sampling method selection. This method generates sets of samples
according to the probability distributions of the uncertain variables and maps them into corresponding sets of
response functions, where the number of samples is specified by the samples integer specification. Means,
standard deviations, coefficients of variation (COVs), and 95% confidence intervals are computed for the response
functions. Probabilities and reliabilities may be computed for response_levels specifications, and response
levels may be computed for either probability_levels or reliability_levels specifications (refer
to the Method Commands chapter in the Dakota Reference Manual [3] for additional information).

Currently, traditional Monte Carlo (MC) and Latin hypercube sampling (LHS) are supported by Dakota and are
chosen by specifying sample_type as random or 1hs. In Monte Carlo sampling, the samples are selected
randomly according to the user-specified probability distributions. Latin hypercube sampling is a stratified sam-
pling technique for which the range of each uncertain variable is divided into N segments of equal probability,
where N, is the number of samples requested. The relative lengths of the segments are determined by the nature
of the specified probability distribution (e.g., uniform has segments of equal width, normal has small segments
near the mean and larger segments in the tails). For each of the uncertain variables, a sample is selected randomly
from each of these equal probability segments. These N, values for each of the individual parameters are then
combined in a shuffling operation to create a set of N, parameter vectors with a specified correlation structure.
A feature of the resulting sample set is that every row and column in the hypercube of partitions has exactly one
sample. Since the total number of samples is exactly equal to the number of partitions used for each uncertain
variable, an arbitrary number of desired samples is easily accommodated (as compared to less flexible approaches
in which the total number of samples is a product or exponential function of the number of intervals for each
variable, i.e., many classical design of experiments methods).

Advantages of sampling-based methods include their relatively simple implementation and their independence
from the scientific disciplines involved in the analysis. The main drawback of these techniques is the large number
of function evaluations needed to generate converged statistics, which can render such an analysis computationally
very expensive, if not intractable, for real-world engineering applications. LHS techniques, in general, require
fewer samples than traditional Monte Carlo for the same accuracy in statistics, but they still can be prohibitively
expensive. For further information on the method and its relationship to other sampling techniques, one is referred
to the works by McKay, et al. [86], Iman and Shortencarier [71], and Helton and Davis [66]. Note that under
certain separability conditions associated with the function to be sampled, Latin hypercube sampling provides a
more accurate estimate of the mean value than does random sampling. That is, given an equal number of samples,
the LHS estimate of the mean will have less variance than the mean value obtained through random sampling.

Figure 5.1 demonstrates Latin hypercube sampling on a two-variable parameter space. Here, the range of both
parameters, x1 and xo, is [0,1]. Also, for this example both x; and x5 have uniform statistical distributions.
For Latin hypercube sampling, the range of each parameter is divided into p “bins” of equal probability. For
parameters with uniform distributions, this corresponds to partitions of equal size. For n design parameters,
this partitioning yields a total of p™ bins in the parameter space. Next, p samples are randomly selected in the
parameter space, with the following restrictions: (a) each sample is randomly placed inside a bin, and (b) for all
one-dimensional projections of the p samples and bins, there will be one and only one sample in each bin. In a
two-dimensional example such as that shown in Figure 5.1, these LHS rules guarantee that only one bin can be
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selected in each row and column. For p = 4, there are four partitions in both z; and x». This gives a total of
16 bins, of which four will be chosen according to the criteria described above. Note that there is more than one
possible arrangement of bins that meet the LHS criteria. The dots in Figure 5.1 represent the four sample sites in
this example, where each sample is randomly located in its bin. There is no restriction on the number of bins in
the range of each parameter, however, all parameters must have the same number of bins.

1

X2

X1

Figure 5.1: An example of Latin hypercube sampling with four bins in design parameters z; and x2. The dots are
the sample sites.

The actual algorithm for generating Latin hypercube samples is more complex than indicated by the description
given above. For example, the Latin hypercube sampling method implemented in the LHS code [ 13] takes into
account a user-specified correlation structure when selecting the sample sites. For more details on the implemen-
tation of the LHS algorithm, see Reference [ 13].

5.2.1 Uncertainty Quantification Example using Sampling Methods

The input file in Figure 5.2 demonstrates the use of Latin hypercube Monte Carlo sampling for assessing prob-
ability of failure as measured by specified response levels. The two-variable Textbook example problem (see
Equation 21.1) will be used to demonstrate the application of sampling methods for uncertainty quantification
where it is assumed that =1 and x5 are uniform uncertain variables on the interval [0, 1].

The number of samples to perform is controlled with the samples specification, the type of sampling algorithm
to use is controlled with the sample_t ype specification, the levels used for computing statistics on the response
functions is specified with the response_levels input, and the seed specification controls the sequence of
the pseudo-random numbers generated by the sampling algorithms. The input samples generated are shown in
Figure 5.3 for the case where samples =5 and samples = 10 for both random (o) and 1hs (+) sample types.

Latin hypercube sampling ensures full coverage of the range of the input variables, which is often a problem with
Monte Carlo sampling when the number of samples is small. In the case of samples = 5, poor stratification
is evident in z; as four out of the five Monte Carlo samples are clustered in the range 0.35 < z; < 0.55, and
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# Dakota Input File: textbook_ug_sampling.in
strategy
single_method
tabular_graphics_data
tabular_graphics_file = ’textbook_uqg _sampling.dat’

method
sampling

samples = 10

seed = 98765 rng rnum2

response_levels = 0.1 0.2 0.6
0.1 0.2 0.6
0.1 0.2 0.6

sample_type lhs

distribution cumulative

variables
uniform_uncertain
lower_bounds =
upper_bounds = 1. 1.
descriptors 'x1’ T x2!

|
o
N
o

interface
fork asynch evaluation_concurrency = 5
analysis_driver = ’text_book’

responses
response_functions = 3
no_gradients
no_hessians

Figure 5.2: Dakota input file for uQ example using LHS - see
Dakota/examples/users/textbook_ug.sampling.in
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Figure 5.3: Distribution of input sample points for random (A) and lhs (4) sampling for samples=5 and 10.

the regions z; < 0.3 and 0.6 < x; < 0.9 are completely missed. For the case where samples = 10, some
clustering in the Monte Carlo samples is again evident with 4 samples in the range 0.5 < z; < 0.55. In both
cases, the stratification with LHS is superior. The response function statistics returned by Dakota are shown in
Figure 5.4. The first two blocks of output specify the response sample means and sample standard deviations
and confidence intervals for these statistics, as well as coefficients of variation. The last section of the output
defines CDF pairs (distribution cumulative was specified) for the response functions by presenting the
probability levels corresponding to the specified response levels (response_levels were set and the default
compute probabilities was used). Alternatively, Dakota could have provided CCDF pairings, reliability
levels corresponding to prescribed response levels, or response levels corresponding to prescribed probability or
reliability levels.

In addition to obtaining statistical summary information of the type shown in Figure 5.4, the results of LHS
sampling also include correlations. Four types of correlations are returned in the output: simple and partial “raw”
correlations, and simple and partial “rank” correlations. The raw correlations refer to correlations performed
on the actual input and output data. Rank correlations refer to correlations performed on the ranks of the data.
Ranks are obtained by replacing the actual data by the ranked values, which are obtained by ordering the data
in ascending order. For example, the smallest value in a set of input samples would be given a rank 1, the next
smallest value a rank 2, etc. Rank correlations are useful when some of the inputs and outputs differ greatly in
magnitude: then it is easier to compare if the smallest ranked input sample is correlated with the smallest ranked
output, for example.

Correlations are always calculated between two sets of sample data. One can calculate correlation coefficients
between two input variables, between an input and an output variable (probably the most useful), or between two
output variables. The simple correlation coefficients presented in the output tables are Pearson’s correlation co-

efficient, which is defined for two variables = and y as: Corr(z, y) = —e2ee&i=DWi—7)

Y @9) = 75 s
coefficients are similar to simple correlations, but a partial correlation coefficient between two variables measures
their correlation while adjusting for the effects of the other variables. For example, say one has a problem with

two inputs and one output; and the two inputs are highly correlated. Then the correlation of the second input and

=. Partial correlation
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Statistics based on 10 samples:

Moments for each response function:

response_fn_1: Mean = 3.83840e-01 Std. Dev. = 4.02815e-01
Coeff. of Variation = 1.04944e+00

response_fn_2: Mean = 7.47987e-02 Std. Dev. = 3.46861le-01
Coeff. of Variation = 4.63726e+00

response_fn_3: Mean = 7.09462e-02 Std. Dev. = 3.41532e-01

Coeff. of Variation = 4.81397e+00

95% confidence intervals for each response function:
response_fn_1: Mean = 9.56831e-02, 6.71997e-01

’

( )

Std Dev = ( 2.77071e-01, 7.35384e-01 )
response_fn_2: Mean = ( -1.73331e-01, 3.22928e-01 ),

Std Dev = ( 2.38583e-01, 6.33233e-01 )
response_fn_3: Mean = ( -1.73371le-01, 3.15264e-01 ),

Std Dev = ( 2.34918e-01, 6.23505e-01 )

Probabilities for each response function:
Cumulative Distribution Function (CDF) for response_fn_1:
Response Level Probability Level Reliability Index
1.0000000000e-01 3.0000000000e-01
2.0000000000e-01 5.0000000000e-01
6.0000000000e-01 7.0000000000e-01
Cumulative Distribution Function (CDF) for response_fn_2:
Response Level Probability Level Reliability Index
1.0000000000e-01 5.0000000000e-01
2.0000000000e-01 7.0000000000e-01
6.0000000000e-01 9.0000000000e-01
Cumulative Distribution Function (CDF) for response_fn_3:
Response Level Probability Level Reliability Index
1.0000000000e-01 6.0000000000e-01
2.0000000000e-01 6.0000000000e-01
6.0000000000e-01 9.0000000000e-01

Figure 5.4: Dakota response function statistics from UQ sampling example.
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the output may be very low after accounting for the effect of the first input. The rank correlations in Dakota are
obtained using Spearman’s rank correlation. Spearman’s rank is the same as the Pearson correlation coefficient
except that it is calculated on the rank data.

Figure 5.5 shows an example of the correlation output provided by Dakota for the input file in Figure 5.2. Note that
these correlations are presently only available when one specifies 1hs as the sampling method under sampling.
Also note that the simple and partial correlations should be similar in most cases (in terms of values of correlation
coefficients). This is because we use a default “restricted pairing” method in the LHS routine which forces near-
zero correlation amongst uncorrelated inputs.

Simple Correlation Matrix between input and output:
x1 x2 response_fn_1 response_fn_2 response_fn_3
x1 1.00000e+00
x2 —=7.22482e-02 1.00000e+00
response_fn_1 -7.04965e-01 -6.27351e-01 1.00000e+00
response_fn_2 8.61628e-01 -5.31298e-01 -2.60486e-01 1.00000e+00
response_fn_3 -5.83075e-01 8.33989e-01 -1.23374e-01 -8.92771e-01 1.00000e+00

Partial Correlation Matrix between input and output:
response_fn_1 response_fn_2 response_fn_3

x1 -9.65994e-01 9.74285e-01 -9.49997e-01

x2 -9.58854e-01 -9.26578e-01 9.77252e-01

Simple Rank Correlation Matrix between input and output:
x1 x2 response_fn_1 response_fn_2 response_fn_3
x1 1.00000e+00
X2 —6.66667e-02 1.00000e+00
response_fn_1 -6.60606e-01 -5.27273e-01 1.00000e+00
response_fn_2 8.18182e-01 -6.00000e-01 -2.36364e-01 1.00000e+00
response_fn_3 -6.24242e-01 7.93939e-01 -5.45455e-02 -9.27273e-01 1.00000e+00

Partial Rank Correlation Matrix between input and output:
response_fn_1 response_fn_2 response_fn_3
x1 -8.20657e-01 9.74896e-01 -9.41760e-01
x2 =7.62704e-01 -9.50799e-01 9.65145e-01

Figure 5.5: Correlation results using LHS Sampling.

Finally, note that the LHS package can be used for design of experiments over design and state variables by
including an active view override in the variables specification section of the Dakota input file (see Section 10.5.1).
Then, instead of iterating on only the uncertain variables, the LHS package will sample over all of the active
variables. In the active all view, continuous design and continuous state variables are treated as having
uniform probability distributions within their upper and lower bounds, discrete design and state variables are
sampled uniformly from within their sets or ranges, and any uncertain variables are sampled within their specified
probability distributions.

5.2.2 Incremental Sampling

In many situations, one may run an initial sample set and then need to perform further sampling to get better
estimates of the mean, variance, and percentiles, and to obtain more comprehensive sample coverage. We call this
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capability incremental sampling. Currently, the LHS incremental sampling capability we have in Dakota requires
that the incremental samples are double the sample size of the previous sample. That is, if one starts with a very
small sample size of 10, then one can use the incremental sampling capability to generate sample sizes of 20, 40,
80, etc. Also, a Dakota restart file (dakota.rst) must be available from the original sample. There are two cases,
random incremental and Latin Hypercube incremental sampling. We assume that LHS incremental will be most
frequently used. One major advantage of LHS incremental sampling is that it maintains the stratification and
correlation structure of the original LHS sample. That is, if one generated 2 independent LHS samples and just
merged them, the calculation of the accuracy of statistical measures such as the mean and the variance would be
slightly incorrect. However, in the incremental case, the full sample (double the original size) is a Latin Hypercube
sample itself and statistical measures and their accuracy can be properly calculated. The incremental sampling
capability is most useful when one is starting off with very small samples. Once the sample size is more than a
few hundred, the benefit of incremental sampling diminishes.

1. Incremental Random Sampling. With incremental random sampling, the original sample set with N samples
must be generated using sample_type as random. Then, the user can create a new Dakota input file that
is very similar to the original one except the sample_t ype should be defined to be incremental_random.
Random incremental sampling does not require a doubling of samples each time. Thus, the user can specify
the number of samples (samples) to be a desired number (it can range from an additional one sample to
a large integer), and the previous_samples should be specified as N. For example, if the first sample
has 50 samples, and 10 more samples are desired, in the second Dakota run, the number of samples should
be set to 60 and the number of previous samples set to 50. In this situation, only 10 new samples will be
generated and the final statistics will be reported on the full sample of 60. The command line syntax for
running the second sample is dakota —i input2.in -r dakota.rst where input2.in is the input
file with the incremental sampling specification and dakota.rst is the restart file. Note that if the restart file
has a different name, that is fine; the correct restart file name should be used.

2. Incremental Latin Hypercube Sampling. With incremental LHS sampling, the original sample set with N
samples must be generated using sample_type as 1hs. Then, the user can create a new Dakota input file
that is very similar to the original one except the sample_t ype should be defined tobe incremental_lhs,
the number of samples (samples) should be 2N (twice the number of original samples), and previous_samples
should be specified as N. For example, if the first sample has 50 samples, in the second Dakota run, the
number of samples should be set to 100 and the number of previous samples set to 50. In this situation, only
50 new samples will be generated and the final statistics will be reported on the full sample of 100. The
command line syntax for running the second sample is dakota -i input2.in -r dakota.rst,
where input2.in is the input file with the incremental sampling specification and dakota.rst is the restart file.
Note that if the restart file has a different name, that is fine; the correct restart file name should be used.

5.3 Reliability Methods

Reliability methods provide an alternative approach to uncertainty quantification which can be less computa-
tionally demanding than sampling techniques. Reliability methods for uncertainty quantification are based on
probabilistic approaches that compute approximate response function distribution statistics based on specified un-
certain variable distributions. These response statistics include response mean, response standard deviation, and
cumulative or complementary cumulative distribution functions (CDF/CCDF). These methods are often more ef-
ficient at computing statistics in the tails of the response distributions (events with low probability) than sampling
based approaches since the number of samples required to resolve a low probability can be prohibitive.

The methods all answer the fundamental question: “Given a set of uncertain input variables, X, and a scalar
response function, g, what is the probability that the response function is below or above a certain level, Z?” The
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former can be written as P[g(X) < z] = F,(z) where F,(Z) is the cumulative distribution function (CDF) of the
uncertain response g(X) over a set of response levels. The latter can be written as P[g(X) > Z| and defines the
complementary cumulative distribution function (CCDF).

This probability calculation involves a multi-dimensional integral over an irregularly shaped domain of interest,
D, where g(X) < z as displayed in Figure 5.6 for the case of two variables. The reliability methods all involve the
transformation of the user-specified uncertain variables, X, with probability density function, p(x1,xs), which
can be non-normal and correlated, to a space of independent Gaussian random variables, u, possessing a mean
value of zero and unit variance (i.e., standard normal variables). The region of interest, D, is also mapped to
the transformed space to yield, D, , where g(U) < z as shown in Figure 5.7. The Nataf transformation [21],
which is identical to the Rosenblatt transformation [98] in the case of independent random variables, is used in
Dakota to accomplish this mapping. This transformation is performed to make the probability calculation more
tractable. In the transformed space, probability contours are circular in nature as shown in Figure 5.7 unlike in
the original uncertain variable space, Figure 5.6. Also, the multi-dimensional integrals can be approximated by
simple functions of a single parameter, (3, called the reliability index. 3 is the minimum Euclidean distance from
the origin in the transformed space to the response surface. This point is also known as the most probable point
(MPP) of failure. Note, however, the methodology is equally applicable for generic functions, not simply those
corresponding to failure criteria; this nomenclature is due to the origin of these methods within the disciplines
of structural safety and reliability. Note that there are local and global reliability methods. The majority of the
methods available are local, meaning that a local optimization formulation is used to locate one MPP. In contrast,
global methods can find multiple MPPs if they exist.
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Figure 5.6: Graphical depiction of calculation of cumulative distribution function in the original uncertain variable
space.

5.3.1 Local Reliability Methods

The Dakota Theory Manual [4] provides the algorithmic details for the local reliability methods, including the
Mean Value method and the family of most probable point (MPP) search methods.
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Figure 5.7: Graphical depiction of integration for the calculation of cumulative distribution function in the trans-
formed uncertain variable space.

Table 5.1: Mapping from Dakota options to standard reliability methods.
Order of approximation and integration
MPP search First order Second order

X_taylor_mean
u_taylor_mean
X_taylor_mpp

u_taylor_mpp

X_two_point

u_two_point
no_approx

5.3.1.1 Method mapping

Given settings for limit state approximation, approximation order, integration approach, and other details pre-
sented to this point, it is evident that the number of algorithmic combinations is high. Table 5.1 provides a
succinct mapping for some of these combinations to common method names from the reliability literature, where
blue indicates the most well-known combinations and gray indicates other supported combinations.

Within the Dakota specification (refer to the Method Commands chapter within the Reference Manual), the MPP
search and integration order selections are explicit in the method specification, but the order of the approximation
is inferred from the associated response specification (as is done with local taylor series approximations described
in Section 9.4.3.2). Thus, reliability methods do not have to be synchronized in approximation and integration
order as shown in the table; however, it is often desirable to do so.
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5.3.2 Global Reliability Methods

Global reliability methods are designed to handle nonsmooth and multimodal failure surfaces, by creating global
approximations based on Gaussian process models. They accurately resolve a particular contour of a response
function and then estimate probabilities using multimodal adaptive importance sampling.

The global reliability method in Dakota is called Efficient Global Reliability Analysis (EGRA) [9]. The name
is due to its roots in efficient global optimization (EGO) [73, 70]. The main idea in EGO-type optimization
methods is that a global approximation is made of the underlying function. This approximation, which is a
Gaussian process model, is used to guide the search by finding points which maximize the expected improvement
function (EIF). The EIF is used to select the location at which a new training point should be added to the Gaussian
process model by maximizing the amount of improvement in the objective function that can be expected by adding
that point. A point could be expected to produce an improvement in the objective function if its predicted value
is better than the current best solution, or if the uncertainty in its prediction is such that the probability of it
producing a better solution is high. Because the uncertainty is higher in regions of the design space with fewer
observations, this provides a balance between exploiting areas of the design space that predict good solutions, and
exploring areas where more information is needed.

The general procedure of these EGO-type methods is:

1. Build an initial Gaussian process model of the objective function.
2. Find the point that maximizes the EIF. If the EIF value at this point is sufficiently small, stop.

3. Evaluate the objective function at the point where the EIF is maximized. Update the Gaussian process
model using this new point. Go to Step 2.

Gaussian process (GP) models are used because they provide not just a predicted value at an unsampled point, but
also an estimate of the prediction variance. This variance gives an indication of the uncertainty in the GP model,
which results from the construction of the covariance function. This function is based on the idea that when input
points are near one another, the correlation between their corresponding outputs will be high. As a result, the
uncertainty associated with the model’s predictions will be small for input points which are near the points used
to train the model, and will increase as one moves further from the training points.

The expected improvement function is used in EGO algorithms to select the location at which a new training point
should be added. The EIF is defined as the expectation that any point in the search space will provide a better
solution than the current best solution based on the expected values and variances predicted by the GP model. It
is important to understand how the use of this EIF leads to optimal solutions. The EIF indicates how much the
objective function value at a new potential location is expected to be less than the predicted value at the current
best solution. Because the GP model provides a Gaussian distribution at each predicted point, expectations can
be calculated. Points with good expected values and even a small variance will have a significant expectation of
producing a better solution (exploitation), but so will points that have relatively poor expected values and greater
variance (exploration).

The application of EGO to reliability analysis, however, is made more complicated due to the inclusion of equality
constraints. In forward reliability analysis, the response function appears as a constraint rather than the objective.
That is, we want to satisfy the constraint that the response equals a threshold value and is on the limit state:
G(u) = z. Therefore, the EIF function was modified to focus on feasibility, and instead of using an expected
improvement function, we use an expected feasibility function (EFF) [9]. The EFF provides an indication of how
well the response is expected to satisfy the equality constraint. Points where the expected value is close to the
threshold (1 ~ Z) and points with a large uncertainty in the prediction will have large expected feasibility values.

The general outline of the EGRA algorithm is as follows: LHS sampling is used to generate a small number of
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samples from the true response function. Then, an initial Gaussian process model is constructed. Based on the
EFF, the point with maximum EFF is found using the global optimizer DIRECT. The true response function is
then evaluated at this new point, and this point is added to the sample set and the process of building a new GP
model and maximizing the EFF is repeated until the maximum EFF is small. At this stage, the GP model is
accurate in the vicinity of the limit state. The GP model is then used to calculate the probability of failure using
multimodal importance sampling, which is explained below.

One method to calculate the probability of failure is to directly perform the probability integration numerically
by sampling the response function. Sampling methods can be prohibitively expensive because they generally
require a large number of response function evaluations. Importance sampling methods reduce this expense by
focusing the samples in the important regions of the uncertain space. They do this by centering the sampling
density function at the MPP rather than at the mean. This ensures the samples will lie the region of interest,
thus increasing the efficiency of the sampling method. Adaptive importance sampling (AIS) further improves the
efficiency by adaptively updating the sampling density function. Multimodal adaptive importance sampling [22]
is a variation of AIS that allows for the use of multiple sampling densities making it better suited for cases where
multiple sections of the limit state are highly probable.

Note that importance sampling methods require that the location of at least one MPP be known because it is
used to center the initial sampling density. However, current gradient-based, local search methods used in MPP
search may fail to converge or may converge to poor solutions for highly nonlinear problems, possibly making
these methods inapplicable. The EGRA algorithm described above does not depend on the availability of accurate
gradient information, making convergence more reliable for nonsmooth response functions. Moreover, EGRA has
the ability to locate multiple failure points, which can provide multiple starting points and thus a good multimodal
sampling density for the initial steps of multimodal AIS. The probability assessment using multimodal AIS thus
incorporates probability of failure at multiple points.

5.3.3 Uncertainty Quantification Examples using Reliability Analysis

In summary, the user can choose to perform either forward (RIA) or inverse (PMA) mappings when performing
a reliability analysis. With either approach, there are a variety of methods from which to choose in terms of limit
state approximations (MVFOSM, MVSOSM, x-/u-space AMV, x-/u-space AMV?, x-/u-space AMV+, x-/u-space
AMVZ2+, x-/u-space TANA, and FORM/SORM), probability integrations (first-order or second-order), limit state
Hessian selection (analytic, finite difference, BFGS, or SR1), and MPP optimization algorithm (SQP or NIP)
selections.

All reliability methods output approximate values of the CDF/CCDF response-probability-reliability levels for
prescribed response levels (RIA) or prescribed probability or reliability levels (PMA). In addition, the MV meth-
ods additionally output estimates of the mean and standard deviation of the response functions along with impor-
tance factors for each of the uncertain variables in the case of independent random variables.

5.3.3.1 Mean-value Reliability with Textbook

Figure 5.8 shows the Dakota input file for an example problem that demonstrates the simplest reliability method,
called the mean value method (also referred to as the Mean Value First Order Second Moment method). It is
specified with method keyword 1ocal_reliability. This method calculates the mean and variance of the
response function based on information about the mean and variance of the inputs and gradient information at the
mean of the inputs. The mean value method is extremely cheap computationally (only five runs were required
for the textbook function), but can be quite inaccurate, especially for nonlinear problems and/or problems with
uncertain inputs that are significantly non-normal. More detail on the mean value method can be found in the
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Local Reliability Methods section of the Dakota Theory Manual [4], and more detail on reliability methods in
general (including the more advanced methods) is found in Section 5.3.

Example output from the mean value method is displayed in Figure 5.9. Note that since the mean of both inputs
is 1, the mean value of the output for response 1 is zero. However, the mean values of the constraints are both 0.5.
The mean value results indicate that variable x1 is more important in constraint 1 while x2 is more important in
constraint 2, which is the case based on Equation 21.1.

# Dakota Input File: textbook_ug meanvalue.in
strategy
single_method #graphics

method
local_reliability

interface
fork asynch
analysis_driver = ’text_book’

variables
lognormal_uncertain = 2
means = 1. 1.
std_deviations = 0.5 0.5
descriptors = 'TFlln’ ’'TF21ln’

responses
response_functions = 3
numerical_gradients
method_source dakota
interval_type central
fd_gradient_step_size = l.e-4
no_hessians

Figure 5.8: Mean  Value Reliability = Method: the Dakota input file - see
Dakota/examples/users/textbook_ug.meanvalue.in

5.3.3.2 FORM Reliability with Lognormal Ratio

This example quantifies the uncertainty in the “log ratio” response function:

x
gx1,9) = = (5.1)
)
by computing approximate response statistics using reliability analysis to determine the response cumulative
distribution function:
Plg(x1,22) < Z] (5.2)

where X, and X, are identically distributed lognormal random variables with means of 1, standard deviations of
0.5, and correlation coefficient of 0. 3.

A Dakota input file showing RIA using FORM (option 7 in limit state approximations combined with first-order
integration) is listed in Figure 5.10. The user first specifies the local_reliability method, followed by
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MV Statistics for response_fn_1:

Approximate Mean Response = 0.0000000000e+00

Approximate Standard Deviation of Response = 0.0000000000e+00

Importance Factors not available.

MV Statistics for response_fn_2:

Approximate Mean Response =

Approximate Standard Deviation of Response =

Importance Factor for variable TFlln =

Importance Factor for variable TF21ln =
MV Statistics for response_fn_3:

Approximate Mean Response = 5.0000000000e-01
Approximate Standard Deviation of Response = 1.0307764064e+00
5
9

.0000000000e-01
.0307764064e+00
.4117647059e-01
.8823529412e-02

(62BN RN @]

Importance Factor for variable TFlln = .8823529412e-02
Importance Factor for variable TF21ln = .4117647059e-01

Figure 5.9: Results of the Mean Value Method on the Textbook Function

the MPP search approach and integration order. In this example, we specify mpp_search no_approx and
utilize the default first-order integration to select FORM. Finally, the user specifies response levels or probabil-
ity/reliability levels to determine if the problem will be solved using an RIA approach or a PMA approach. In the
example figure of 5.10, we use RIA by specifying a range of response_levels for the problem. The resulting
output for this input is shown in Figure 5.11, with probability and reliability levels listed for each response level.
Figure 5.12 shows that FORM compares favorably to an exact analytic solution for this problem. Also note that
FORM does have some error in the calculation of CDF values for this problem, but it is a very small error (on the
order of e-11), much smaller than the error obtained when using a Mean Value method, which will be discussed
next.

If the user specifies local_reliability as a method with no additional specification on how to do the MPP
search, then no MPP search is done: the Mean Value method is used. The MV results are shown in Figure 5.13
and consist of approximate mean and standard deviation of the response, the importance factors for each uncertain
variable, and approximate probability/reliability levels for the prescribed response levels that have been inferred
from the approximate mean and standard deviation (see Mean Value section in Reliability Methods Chapter of
Dakota Theory Manual [4]). It is evident that the statistics are considerably different from the fully converged
FORM results; however, these rough approximations are also much less expensive to calculate. The importance
factors are a measure of the sensitivity of the response function(s) to the uncertain input variables, but in this case,
are not separable due to the presence of input correlation coefficients. A comparison of the mean value results
with the FORM results is shown in Figure 5.12. The mean value results are not accurate near the tail values of the
CDF, and can differ from the exact solution by as much as 0.11 in CDF estimates. A comprehensive comparison
of various reliability methods applied to the logratio problem is provided in [26].

Additional reliability analysis and design results are provided in Sections 21.9.1-21.9.5.

5.4 Stochastic Expansion Methods

The development of these techniques mirrors that of deterministic finite element analysis through the utilization
of the concepts of projection, orthogonality, and weak convergence. The polynomial chaos expansion is based
on a multidimensional orthogonal polynomial approximation and the stochastic collocation approach is based
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# Dakota Input File: logratio_ug _reliability.in
strategy
single_method graphics

method
local_reliability
mpp_search no_approx
response_levels = .4 .5 .55 .6 .65 .7
.75 .8 .85 .9 1. 1.05 1.15 1.2 1.25 1.3
1.35 1.4 1.5 1.55 1.6 1.65 1.7 1.75

variables
lognormal_uncertain = 2
means = 1. 1
std_deviations = 0.5 0.5
descriptors = 'TFlln’ "TF21n’
uncertain_correlation_matrix = 1 0.3
0.3 1

interface
fork asynch
analysis_driver = ’log_ratio’

responses
response_functions = 1
numerical_gradients
method_source dakota
interval_type central
fd_gradient_step_size = l.e-4
no_hessians

Figure 5.10: Dakota input file for Reliability UQ example
Dakota/examples/users/logratio_ug.reliability.in

using FORM

N9
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Cumulative Distribution Function

FRPRPPRPRPRRERRRRRPRRRPROODOD-I-Ioo U0

Response Level

.0000000000e-01
.0000000000e-01
.5000000000e-01
.0000000000e-01
.5000000000e-01
.0000000000e-01
.5000000000e-01
.0000000000e-01
.5000000000e-01
.0000000000e-01
.0000000000e+00
.0500000000e+00
.1500000000e+00
.2000000000e+00
.2500000000e+00
.3000000000e+00
.3500000000e+00
.4000000000e+00
.5000000000e+00
.5500000000e+00
.6000000000e+00
.6500000000e+00
.7000000000e+00
.7500000000e+00

(CDF)

Probability Level

O 00 0 00 ~J J JJ o oo o U Ul b wwwdhdhNhRFE R P b

.7624085962e-02
.0346525475e-01
.3818404972e-01
.7616275822e-01
.1641741368e-01
.5803428381e-01
.0020938124e-01
.4226491013e-01
.8365052982e-01
.2393548232e-01
.0000000000e-01
.3539344228e-01
.0043460094e-01
.3004131827e-01
.5773508987e-01
.8356844630e-01
.0761025532e-01
.2994058691e-01
.6981945355e-01
.8755158269e-01
.0393505584e-01
.1906005158e-01
.3301386860e-01
.4588021938e-01

for response_fn_1:
Reliability Index
.6683404020e+00
.2620507942e+00
.0885143628e+00
.3008801339%9e-01
.8434989943e-01
.4941748143e-01
.2379840558e-01
.0628960782e-01
.9590705956e-01
.9183562480e-01
.8682233460e-12
.8834907167e-02
.5447217462e-01
.3196278078e-01
.0628960782e-01
.7770089473e-01
.4641676380e-01
.1263331274e-01
.3825238860e-01
.9795460350e-01
.5576118635e-01
.1178881995e-01
.6614373461e-01
.0189229206e+00

Figure 5.12: Comparison of the cumulative distribution function (CDF) computed by FORM, the Mean Value
method, and the exact CDF for g(z1, z2) =

Figure 5.11: Output from Reliability UQ example using FORM.
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MV Statistics for response_fn_1:
Approximate Mean Response

Importance Factors not available.
Cumulative Distribution Function (CDF)
Probability Level

FRPPRPPRPPR R RRRRPRRROOODOO-Idoo 00

Response Level

.0000000000e-01
.0000000000e-01
.5000000000e-01
.0000000000e-01
.5000000000e-01
.0000000000e-01
.5000000000e-01
.0000000000e-01
.5000000000e-01
.0000000000e-01
.0000000000e+00
.0500000000e+00
.1500000000e+00
.2000000000e+00
.2500000000e+00
.3000000000e+00
.3500000000e+00
.4000000000e+00
.5000000000e+00
.5500000000e+00
.6000000000e+00
.6500000000e+00
.7000000000e+00
.7500000000e+00

.5524721837e-01
.9901236093e-01
.2343641149%e-01
.4948115037e-01
.7705656603e-01
.0604494093e-01
.3630190949e-01
.6765834596e-01
.9992305332e-01
.3288618783e-01
.0000000000e-01
.3367668035e-01
.0007694668e-01
.3234165404e-01
.6369809051e-01
.9395505907e-01
.2294343397e-01
.5051884963e-01
.0098763907e-01
.2372893005e-01
.4475278163e-01
.6405064339e-01
.8163821351e-01
.9755305196e-01

QO 00 O 0 W O ~J ~J O O &Y OO Ul U v W W W whNDNEFE -

for

= 1.0000000000e+00
Approximate Standard Deviation of Response = 5.9160798127e-01

response_fn_1:

Reliability Index

.0141851006e+00
.4515425050e-01
.6063882545e-01
.7612340040e-01
.9160797535e-01
.0709255030e-01
.2257712525e-01
.3806170020e-01
.5354627515e-01
.6903085010e-01
.0000000000e+00
.4515425050e-02
.5354627515e-01
.3806170020e-01
.2257712525e-01
.0709255030e-01
.9160797535e-01
.7612340040e-01
.4515425050e-01
.2966967555e-01
.0141851006e+00
.0987005257e+00
.1832159507e+00
.2677313758e+00

Figure 5.13: Output from Reliability UQ example using MV.
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on a multidimensional interpolation polynomial approximation, both formed in terms of standardized random
variables. A distinguishing feature of these two methodologies is that the final solution is expressed as a func-
tional mapping, and not merely as a set of statistics as is the case for many nondeterministic methodologies. This
makes these techniques particularly attractive for use in multi-physics applications which link different analysis
packages. The first stochastic expansion method is the polynomial chaos expansion (PCE) [42, 43]. For smooth
functions (i.e., analytic, infinitely-differentiable) in L? (i.e., possessing finite variance), exponential convergence
rates can be obtained under order refinement for integrated statistical quantities of interest such as mean, vari-
ance, and probability. Dakota implements the generalized PCE approach using the Wiener-Askey scheme [131],
in which Hermite, Legendre, Laguerre, Jacobi, and generalized Laguerre orthogonal polynomials are used for
modeling the effect of continuous random variables described by normal, uniform, exponential, beta, and gamma
probability distributions, respectively'. These orthogonal polynomial selections are optimal for these distribution
types since the inner product weighting function corresponds? to the probability density functions for these con-
tinuous distributions. Orthogonal polynomials can be computed for any positive weight function, so these five
classical orthogonal polynomials may be augmented with numerically-generated polynomials for other probabil-
ity distributions (e.g., for lognormal, extreme value, and histogram distributions). When independent standard
random variables are used (or computed through transformation), the variable expansions are uncoupled, allow-
ing the polynomial orthogonality properties to be applied on a per-dimension basis. This allows one to mix and
match the polynomial basis used for each variable without interference with the spectral projection scheme for
the response.

In non-intrusive PCE, simulations are used as black boxes and the calculation of chaos expansion coefficients for
response metrics of interest is based on a set of simulation response evaluations. To calculate these response PCE
coefficients, two primary classes of approaches have been proposed: spectral projection and regression. The spec-
tral projection approach projects the response against each basis function using inner products and employs the
polynomial orthogonality properties to extract each coefficient. Each inner product involves a multidimensional
integral over the support range of the weighting function, which can be evaluated numerically using sampling,
tensor-product quadrature, Smolyak sparse grid [107], or cubature [110] approaches. The regression approach
finds a set of PCE coefficients which best match a set of response values obtained from either a design of computer
experiments (“point collocation” [126]) or from a randomly selected subset of tensor Gauss points (“probabilistic
collocation” [117]). Various methods can be used to solve the resulting linear system, including least squares
methods for over-determined systems and compressed sensing methods for under-determined systems. Details of
these methods are documented in the Linear regression section of the Dakota Theory Manual [4] and the neces-
sary specifications needed to activate these techniques are listed in the Methods chapter of the Dakota Reference
Manual [3].

Stochastic collocation (SC) is another stochastic expansion technique for UQ that is closely related to PCE. As
for PCE, exponential convergence rates can be obtained under order refinement for integrated statistical quantities
of interest, provided that the response functions are smooth with finite variance. The primary distinction is that,
whereas PCE estimates coefficients for known multivariate orthogonal polynomial basis functions, SC forms
multivariate interpolation polynomial bases for known coefficients. The interpolation polynomials may be either
local or global and either value-based or gradient-enhanced (four combinations: Lagrange, Hermite, piecewise
linear spline, and piecewise cubic spline), and may be used within nodal or hierarchical interpolation formulations.
Interpolation is performed on structured grids such as tensor-product or sparse grids. Starting from a tensor-
product multidimensional interpolation polynomial in the value-based case (Lagrange or piecewise linear spline),
we have the feature that the i*” interpolation polynomial has a value of 1 at collocation point i and a value of 0
for all other collocation points, leading to the use of expansion coefficients that are just the response values at
each of the collocation points. In the gradient-enhanced case (Hermite or piecewise cubic spline), SC includes
both type 1 and type 2 interpolation polynomials, where the former interpolate the values while producing zero

!Orthogonal polynomial selections also exist for discrete probability distributions, but are not yet supported in Dakota.
2Identical support range; weight differs by at most a constant factor.
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gradients and the latter interpolate the gradients while producing zero values (refer to [4] for additional details).
Sparse interpolants are weighted sums of these tensor interpolants; however, they are only interpolatory for sparse
grids based on fully nested rules and will exhibit some interpolation error at the collocation points for sparse
grids based on non-nested rules. A key to maximizing performance with SC is performing collocation using the
Gauss points and weights from the same optimal orthogonal polynomials used in PCE. For use of standard Gauss
integration rules (not nested variants such as Gauss-Patterson or Genz-Keister) within tensor-product quadrature,
tensor PCE expansions and tensor SC interpolants are equivalent in that identical polynomial approximations
are generated [15]. Moreover, this equivalence can be extended to sparse grids based on standard Gauss rules,
provided that a sparse PCE is formed based on a weighted sum of tensor expansions [14].

The Dakota Theory Manual [4] provides full algorithmic details for the PCE and SC methods.

5.4.1 Uncertainty Quantification Examples using Stochastic Expansions
5.4.1.1 Polynomial Chaos Expansion for Rosenbrock

A typical Dakota input file for performing an uncertainty quantification using PCE is shown in Figure 5.14. In this
example, we compute CDF probabilities for six response levels of Rosenbrock’s function. Since Rosenbrock is a
fourth order polynomial and we employ a fourth-order expansion using an optimal basis (Legendre for uniform
random variables), we can readily obtain a polynomial expansion which exactly matches the Rosenbrock function.
In this example, we select Gaussian quadratures using an anisotropic approach (fifth-order quadrature in x; and
third-order quadrature in x5), resulting in a total of 15 function evaluations to compute the PCE coefficients.

The tensor product quadature points upon which the expansion is calculated are shown in Figure 5.15. The tensor
product generates all combinations of values from each individual dimension: it is an all-way pairing of points.

Once the expansion coefficients have been calculated, some statistics are available analytically and others must be
evaluated numerically. For the numerical portion, the input file specifies the use of 10000 samples, which will be
evaluated on the expansion to compute the CDF probabilities. In Figure 5.16, excerpts from the results summary
are presented, where we first see a summary of the PCE coefficients which exactly reproduce Rosenbrock for a
Legendre polynomial basis. The analytic statistics for mean, standard deviation, and COV are then presented.
For example, the mean is 455.66 and the standard deviation is 606.56. The moments are followed by global
sensitivity indices (Sobol’ indices).This example shows that variable x1 has the largest main effect (0.497) as
compared with variable x2 (0.296) or the interaction between x1 and x2 (0.206). After the global sensitivity
indices, the local sensitivities are presented, evaluated at the mean values. Finally, we see the numerical results
for the CDF probabilities based on 10000 samples performed on the expansion. For example, the probability
that the Rosenbrock function is less than 100 over these two uncertain variables is 0.342. Note that this is a very
similar estimate to what was obtained using 200 Monte Carlo samples, with fewer true function evaluations.

5.4.1.2 Uncertainty Quantification Example using Stochastic Collocation

Compared to the previous PCE example, this section presents a more sophisticated example, where we use
stochastic collocation built on an anisotropic sparse grid defined from numerically-generated orthogonal poly-
nomials. The uncertain variables are lognormal in this example and the orthogonal polynomials are generated
from Gauss-Wigert recursion coefficients [105] in combination with the Golub-Welsch procedure [55]. The input
file is shown in Figure 5.17. Note that the dimension preference of (2, 1) is inverted to define a v weighting vector
of (0.5,1) (and ~ of 0.5) for use in the anisotropic Smolyak index set constraint (see Smolyak sparse grids sec-
tion in Stochastic Expansion Methods chapter in Dakota Theory Manual [4]). In this example, we compute CDF
probabilities for six response levels of Rosenbrock’s function. This example requires 19 function evaluations to
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# Dakota Input File: rosen_ug_pce.in
strategy
single_method #graphics

method

polynomial_chaos
quadrature_order =5
dimension_preference = 5 3
samples = 10000
seed = 12347 rng rnum2
response_levels =
.1 1. 50. 100. 500. 1000.
variance_based_decomp #univariate_effects

variables
uniform_uncertain = 2
lower_bounds = -2. =-2.
upper_bounds = 2. 2.
descriptors = ’x1’" ’"x2’'
interface
direct
analysis_driver = ’rosenbrock’
responses
response_functions = 1

no_gradients
no_hessians

Figure 5.14: Dakota input file for performing UQ using polynomial chaos expansions — see
Dakota/examples/users/rosen_ug.pce.in

Figure 5.15: Rosenbrock polynomial chaos example: tensor product quadrature points.
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Polynomial Chaos coefficients for response_fn_1:
coefficient ul u2
4.5566666667e+02 PO PO
-4.0000000000e+00 Pl PO
9.1695238095e+02 P2 PO
-9.9475983006e-14 P3 PO
3.6571428571e+02 P4 PO
-5.3333333333e+02 PO P1
-3.9968028887e-14 Pl P1
-1.0666666667e+03 P2 Pl
-3.3573144265e-13 P3 Pl
1.2829737273e-12 P4 P1
2.6666666667e+02 PO P2
2.2648549702e-13 Pl P2
4.8849813084e-13 P2 P2
2.8754776338e-13 P3 P2
2.8477220582e-13 P4 P2

Statistics derived analytically from polynomial expansion:

Moment-based statistics for each response function:

Mean Std Dev Skewness

response_fn_1
expansion:

numerical:

4.5566666667e+02 6.0656024184e+02

Covariance among response functions:
[[ 3.6791532698e+05 1]

response_fn_1:
[ -2.0000000000e+00 2.4055757386e-13 ]

Kurtosis

4.5566666667e+02 6.0656024184e+02 1.9633285271e+00 3.3633861456e+00

Local sensitivities for each response function evaluated at uncertain variable means:

Bin Lower

Main Total
4.9746891383e-01 7.0363551328e-01 x1
2.9636448672e-01 5.0253108617e-01 x2

Interaction

Global sensitivity indices for each response function:
response_fn_1 Sobol indices:

2.0616659946e-01 x1 x2

Level mappings for each
Cumulative Distribution

Bin Upper

response function:

Function (CDF)

Density Value

6.8311107124e-03 1.0000000000e-01 2.0393073423e-02
1.0000000000e-01 1.0000000000e+00 1.3000000000e-02
1.0000000000e+00 5.0000000000e+01 4.7000000000e-03
5.0000000000e+01 1.0000000000e+02 1.9680000000e-03
1.0000000000e+02 5.0000000000e+02 9.2150000000e-04
5.0000000000e+02 1.0000000000e+03 2.8300000000e-04
1.0000000000e+03 3.5755437782e+03 5.7308286215e-05

for response_fn_1:

1.0000000000e-01 1.9000000000e-03
1.0000000000e+00 1.3600000000e-02
5.0000000000e+01 2.4390000000e-01
1.0000000000e+02 3.4230000000e-01
5.0000000000e+02 7.1090000000e-01
1.0000000000e+03 8.5240000000e-01

Statistics based on 10000 samples performed on polynomial expansion:

Probability Density Function (PDF) histograms for each response function:
PDF for response_fn_1:

Figure 5.16: Excerpt of UQ output for polynomial chaos example.
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calculate the interpolating polynomials in stochastic collocation and the resulting expansion exactly reproduces
Rosenbrock’s function. The placement of the points generated by the sparse grid is shown in Figure 5.18.

# Dakota Input File: rosen_ug_sc.in
strategy
single_method #graphics

method
stoch_collocation
sparse_grid_level = 3
dimension_preference = 2 1
samples = 10000 seed = 12347 rng rnum2
response_levels = .1 1. 50. 100. 500. 1000.

variance_based_decomp #univariate_effects
output silent

variables
lognormal_uncertain
means = 1. 1.
std_deviations = 0.5 0.5
descriptors = ’x1’" ’"x2’'

Il
[\

interface
direct
analysis_driver = ’rosenbrock’

responses
response_functions = 1
no_gradients
no_hessians

Figure 5.17: Dakota input file for performing UQ wusing stochastic collocation — see
Dakota/examples/users/rosen_ug.sc.in

Once the expansion coefficients have been calculated, some statistics are available analytically and others must be
evaluated numerically. For the numerical portion, the input file specifies the use of 10000 samples, which will be
evaluated on the expansion to compute the CDF probabilities. In Figure 5.19, excerpts from the results summary
are presented. We first see the moment statistics for mean, standard deviation, skewness, and kurtosis computed
by numerical integration (see Analytic moments section in Stochastic Expansion Methods chapter in Dakota
Theory Manual [4]), where the numerical row corresponds to integration using the original response values and the
expansion row corresponds to integration using values from the interpolant. The response covariance (collapsing
to a single variance value for one response function) and global sensitivity indices (Sobol’ indices) are presented
next. This example shows that variable x1 has the largest main effect (0.99) as compared with variable x2 (0.0007)
or the interaction between x1 and x2 (0.005). Finally, we see the numerical results for the CDF probabilities based
on 10000 samples performed on the expansion. For example, the probability that the Rosenbrock function is less
than 100 is 0.7233. Note that these results are significantly different than the ones presented in Section 5.4.1.1
because of the different assumptions about the inputs: uniform[-2,2] versus lognormals with means of 1.0 and
standard deviations of 0.5.
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Figure 5.18: Rosenbrock stochastic collocation example: sparse grid points.

Statistics derived analytically from polynomial expansion:

Moment-based statistics for each response function:

Mean Std Dev Skewness

response_fn_1
expansion: 2.5671972656e+02 2.0484189184e+03 2.7419241630e+02
numerical: 2.5671972656e+02 2.0484189184e+03 2.7419241630e+02

Covariance among response functions:
[[ 4.1960200651e+06 1]

Global sensitivity indices for each response function:
response_fn_1 Sobol indices:

Main Total
9.9391978710e-01 9.9928724777e-01 x1
7.1275222945e-04 6.0802128961e-03 x2

Interaction
5.3674606667e-03 x1 x2

Statistics based on 10000 samples performed on polynomial expansion:

Level mappings for each response function:
Cumulative Distribution Function (CDF) for response_fn_1:

1.0000000000e-01 1.8100000000e-02
1.0000000000e+00 8.7800000000e-02
5.0000000000e+01 5.8410000000e-01
1.0000000000e+02 7.2330000000e-01
5.0000000000e+02 9.2010000000e-01
1.0000000000e+03 9.5660000000e-01

Response Level Probability Level Reliability Index General Rel Index

Kurtosis

1.9594567379e+06
1.9594567379e+06

Figure 5.19: Excerpt of UQ output for stochastic collocation

example.
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5.5 Importance Sampling Methods

Importance sampling is a method that allows one to estimate statistical quantities such as failure probabilities (e.g.
the probability that a response quantity will exceed a threshold or fall below a threshold value) in a way that is
more efficient than Monte Carlo sampling. The core idea in importance sampling is that one generates samples
that preferentially samples important regions in the space (e.g. in or near the failure region or user-defined region
of interest), and then appropriately weights the samples to obtain an unbiased estimate of the failure probability
[109]. In importance sampling, the samples are generated from a density which is called the importance density:
it is not the original probability density of the input distributions. The importance density should be centered
near the failure region of interest. For black-box simulations such as those commonly interfaced with Dakota, it
is difficult to specify the importance density a priori: the user often does not know where the failure region lies,
especially in a high-dimensional space. [114]

More formally, we define the objective of importance sampling as calculating the probability, P, that the output
will exceed a threshold level. This is a failure probability, where the failure probability is defined as some scalar
function, y (X), exceeding a threshold, 7', where the inputs, X, are randomly distributed with density, p (X).
When evaluating y (X) is sufficiently expensive or P is sufficiently small, Monte Carlo (MC) sampling methods
to estimate P will be infeasible due to the large number of function evaluations required for a specified accuracy.

The probability of failure can be thought of as the mean rate of occurrence of failure. The Monte Carlo (MC)
estimate of P is therefore the sample mean of the indicator function, I (X),

1 N
Puc = NZI(Xi) X~p(X), (5.3)
i=1

where N samples, X;, are drawn from p (X), and the indicator function I (X) is 1 if failure occurs and zero
otherwise.

Importance sampling draws samples from the importance density p’ (X) and scales the sample mean by the im-
portance density:

Prs = %Z (1 (x;) 2% ) X ~ p (X). (5.4)

=1

This reduces the asymptotic error variance from:

o2 = (5.5)

to

E {(I (X) 2% P) 2}

Oyys = ~ . (5.6)
Inspection of Eq. 5.6 reveals 2, . = 0if p’ (X) equals the ideal importance density p* (X),
I (X)p(X

However, p* (X) is unknown a priori because I (X) is only known where it has been evaluated. Therefore, the
required P in the denominator is also unknown: this is what we are trying to estimate.

If importance sampling is to be effective, the practitioner must be able to choose a good p’ (X) without already
knowing I (X) everywhere. There is a danger: a poor choice for p’ (X) can put most of the samples in unimportant
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regions and make UST” . much greater than UETTM - In particular, importance sampling can be challenging for

very low probability events in high-dimensional spaces where the output y is calculated by a simulation. In these
cases, usually one does not know anything a priori about where the failure region exists in input space. We have
developed two importance sampling approaches which do not rely on the user explicitly specifying an importance
density.

5.5.1 Importance Sampling Method based on Reliability Approach

The first method is based on ideas in reliability modeling 5.3.1. An initial Latin Hypercube sampling is performed
to generate an initial set of samples. These initial samples are augmented with samples from an importance density
as follows: The variables are transformed to standard normal space. In the transformed space, the importance
density is a set of normal densities centered around points which are in the failure region. Note that this is similar
in spirit to the reliability methods, in which importance sampling is centered around a Most Probable Point (MPP).
In the case of the LHS samples, the importance sampling density will simply by a mixture of normal distributions
centered around points in the failure region.

This method is specified by the keyword importance_sampling. The options for importance sampling are as
follows: import centers a sampling density at one of the initial LHS samples identified in the failure region. It
then generates the importance samples, weights them by their probability of occurence given the original density,
and calculates the required probability (CDF or CCDF level). adapt_import is the same as import but is
performed iteratively until the failure probability estimate converges. mm_adapt_import starts with all of the
samples located in the failure region to build a multimodal sampling density. First, it uses a small number of
samples around each of the initial samples in the failure region. Note that these samples are allocated to the
different points based on their relative probabilities of occurrence: more probable points get more samples. This
early part of the approach is done to search for “representative” points. Once these are located, the multimodal
sampling density is set and then the multi-modal adaptive method proceeds similarly to the adaptive method
(sample until convergence).

5.5.2 Gaussian Process Adaptive Importance Sampling Method

The second importance sampling method in Dakota is the one we recommend, at least for problems that have a
relatively small number of input variables (e.g. less than 10). This method, Gaussian Process Adaptive Importance
Sampling, is outlined in the paper [!7]. This method starts with an initial set of LHS samples and adds samples
one at a time, with the goal of adaptively improving the estimate of the ideal importance density during the process.
The approach uses a mixture of component densities. An iterative process is used to construct the sequence of
improving component densities. At each iteration, a Gaussian process (GP) surrogate is used to help identify areas
in the space where failure is likely to occur. The GPs are not used to directly calculate the failure probability; they
are only used to approximate the importance density. Thus, the Gaussian process adaptive importance sampling
algorithm overcomes limitations involving using a potentially inaccurate surrogate model directly in importance
sampling calculations.

This method is specified with the keyword gpais. There are three main controls which govern the behavior of
the algorithm. samples specifies the initial number of Latin Hypercube samples which are used to create the
initial Gaussian process surrogate. emulator_samples specifies the number of samples taken on the latest
Gaussian process model each iteration of the algorithm. These samples are used in the construction of the next
importance sampling density. The default is 10,000 samples. The third control is max_iterations, which
controls the number of iterations of the algorithm. Each iteration, one additional sample of the “true” simulation
is taken. Thus, if samples were set at 100 and max_iterations were set to 200, there would be a total of
300 function evaluations of the simulator model taken.
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5.6 Adaptive Sampling Methods

The goal in performing adaptive sampling is to construct a surrogate model that can be used as an accurate
predictor to some expensive simulation, thus it is to one’s advantage to build a surrogate that minimizes the error
over the entire domain of interest using as little data as possible from the expensive simulation. The adaptive part
alludes to the fact that the surrogate will be refined by focusing samples of the expensive simulation on particular
areas of interest rather than rely on random selection or standard space-filling techniques.

At a high-level, the adaptive sampling pipeline is a four-step process:

1. Evaluate the expensive simulation (referred to as the true model) at initial sample points
2. Fit/refit a surrogate model
3. Create a candidate set and score based on information from surrogate

4. Select a candidate point to evaluate the true model and Repeat 2-4

In terms of the Dakota implementation, the adaptive sampling method currently uses Latin Hypercube sampling
(LHS) to generate the initial points in Step 1 above. For Step 2, we use a Gaussian process model. The user
can specify the scoring metric used to select the next point (or points) to evaluate and add to the set. We have
investigated several scoring metrics with which to evaluate candidate points for Step 3. There are some classical
ones such as distance (e.g. add a point which maximizes the minimum distance to all of the existing points). This
distance metric tends to generate points that are space-fillinlg. We have investigated several methods that involve
interesting topological features of the space (e.g. points that are near saddle points). These are an area of active
investigation but are not currently included in Dakota. The fitness metrics for scoring candidate points currently
include:

Predicted Variance First introduced in [82] and later used in [104], this method uses the predicted variance of
the Gaussian process surrogate as the score of a candidate point. Thus, the adaptively chosen points will be
in areas of highest uncertainty according to the Gaussian process model.

Distance A candidate’s score is the Euclidean distance in domain space between the candidate and its nearest
neighbor in the set of points already evaluated on the true model. Therefore, the most undersampled area of
the domain will always be selected. The adaptivity of this method could be brought to question as it would
chose the exact same points regardless of the surrogate model used. However, it is useful to use to compare
other adaptive metrics to one that relies purely on space-filling in an equivalent context.

Gradient Similar to the above metric, a candidate’s nearest neighbor is determined as in the distance metric,
only now the score is the absolute value of the difference in range space of the two points. The range space
values used are predicted from the surrogate model. Though this method is called the gradient metric, it
actually does not take into account how close the candidate and its neighbor are in domain space. This
method attempts to evenly fill the range space of the surrogate.

Note that in our approach, a Latin Hypercube sample is generated (a new one, different from the initial sample)
and the surrogate model is evaluated at this points. These are the “candidate points” that are then evaluated
according to the fitness metric outlined above. The number of candidates used in practice should be high enough
to fill most of the input domain: we recommend at least hundreds of points for a low- dimensional problem. All
of the candidates (samples on the emulator) are given a score and then the highest-scoring candidate is selected to
be evaluated on the true model.
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The adaptive sampling method also can generate batches of points to add at a time. With batch or multi-point
selection, the true model can be evaluated in parallel and thus increase throughput before refitting our surrogate
model. This proposes a new challenge as the problem of choosing a single point and choosing multiple points off
a surrogate are fundamentally different. Selecting the n best scoring candidates is more than likely to generate a
set of points clustered in one area which will not be conducive to adapting the surrogate. We have implemented
several strategies for batch selection of points:

Naive Selection This strategy will select the n highest scoring candidates regardless of their position. This tends
to group an entire round of points in the same area.

Distance Penalized Re-weighted Scoring In this strategy, the highest scoring candidate is selected and then all
remaining candidates are re-scored with a distance penalization factor added in to the score. Only points
selected within a round are used for the distance penalization. The factor is the same as used in the distance
penalization scoring metrics from [83]. First, compute all of the minimum distances from each remaining
candidate to the selected candidates. Then, determine the median value of these distances. If the smallest
distance, d, between a point and the selected set is less than the computed median distance its score is
unaltered, otherwise the score is multiplied by a value p determined by the following equation:

p=15%d—05%d> (5.8)

Topological Maxima of Scoring Function In this strategy we look at the topology of the scoring function and
select the n highest maxima in the topology. To determine local maxima, we construct the approximate
Morse-Smale complex. If the number of local maxima is less than n, we revert to the distance strategy
above. As a further extension, one may want to filter low-persistence maxima, but to keep the framework
general, we chose to omit this feature as defining a threshold for what deems a critical point as “low
persistence” can vary drastically from problem to problem.

Constant Liar We adapt the constant liar strategy presented in [49] with the scoring metrics. The strategy first
selects the highest scoring candidate, and then refits the surrogate using a “lie” value at the point selected
and repeating until n points have been selected whereupon the lie values are removed from the surrogate
and the selected points are evaluated on the true model and the surrogate is refit with these values.

The adaptive sampling method is specified by the method keyword adaptive_sampling. There are many
controls, including the number of candidate samples to investigate each iteration (emulator_samples), the
fitness metric used in scoring candidates (fitness_metric), and the number of iterations to perform the adap-
tive sampling (max_iterations). For batch selection of points, one specifies a batch_selection strategy
and abatch_size. The details of the specification are provided in the Dakota reference manual.

5.7 Epistemic Nondeterministic Methods

Uncertainty quantification is often used as part of the risk assessment of performance, reliability, and safety of
engineered systems. Increasingly, uncertainty is separated into two categories for analysis purposes: aleatory
and epistemic uncertainty [93, 67]. Aleatory uncertainty is also referred to as variability, irreducible or inherent
uncertainty, or uncertainty due to chance. Examples of aleatory uncertainty include the height of individuals
in a population, or the temperature in a processing environment. Aleatory uncertainty is usually modeled with
probability distributions, and sampling methods such as Latin Hypercube sampling in Dakota can be used to model
aleatory uncertainty. In contrast, epistemic uncertainty refers to lack of knowledge or lack of information about
a particular aspect of the simulation model, including the system and environment being modeled. An increase
in knowledge or information relating to epistemic uncertainty will lead to a reduction in the predicted uncertainty
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of the system response or performance. For epistemic uncertain variables, typically one does not know enough
to specify a probability distribution on a variable. Epistemic uncertainty is referred to as subjective, reducible,
or lack of knowledge uncertainty. Examples of epistemic uncertainty include little or no experimental data for
a fixed but unknown physical parameter, incomplete understanding of complex physical phenomena, uncertainty
about the correct model form to use, etc.

There are many approaches which have been developed to model epistemic uncertainty, including fuzzy set theory,
possibility theory, and evidence theory. It is also possible to use simple interval analysis in an epistemic context.
Interval analysis and evidence theory are described in more detail below.

5.7.1 Interval Methods for Epistemic Analysis

In interval analysis, one assumes that nothing is known about an epistemic uncertain variable except that its value
lies somewhere within an interval. In this situation, it is NOT assumed that the value has a uniform probability
of occuring within the interval. Instead, the interpretation is that any value within the interval is a possible value
or a potential realization of that variable. In interval analysis, the uncertainty quantification problem is one of
determining the resulting bounds on the output (defining the output interval) given interval bounds on the inputs.
Again, any output response that falls within the output interval is a possible output with no frequency information
assigned to it.

We have the capability to perform interval analysis using either global_interval_est or local_interval_est.
In the global approach, one uses either a global optimization method or a sampling method to assess the bounds.
global_interval_est allows the user to specify either 1hs, which performs Latin Hypercube Sampling

and takes the minimum and maximum of the samples as the bounds (no optimization is performed) or ego. In

the case of ego, the efficient global optimization method is used to calculate bounds. The ego method is de-
scribed in Section 8.4. If the problem is amenable to local optimization methods (e.g. can provide derivatives or

use finite difference method to calculate derivatives), then one can use local methods to calculate these bounds.
local_interval_est allows the user to specify either sgp which is sequential quadratic programming, or

nip which is a nonlinear interior point method.

Note that when performing interval analysis, it is necessary to define interval uncertain variables as described
in Section 10.3. For interval analysis, one must define only one interval per input variable, in contrast with
Dempster-Shafer evidence theory, where an input can have several possible intervals. Interval analysis can be
considered a special case of Dempster-Shafer evidence theory where each input is defined by one input interval
with a basic probability assignment of one. In Dakota, however, the methods are separate and semantic differences
exist in the output presentation. If you are performing a pure interval analysis, we recommend using either
global_interval_estorlocal_interval_est insteadof global_evidenceor local_evidence,
for reasons of simplicity.

These interval methods can also be used as the outer loop within an interval-valued probability analysis for prop-
agating mixed aleatory and epistemic uncertainty — refer to Section 16.1.1 for additional details.

An example of interval estimation is shown in Figure 5.20, with example results in Figure 5.21. This example is
a demonstration of calculating interval bounds for three outputs of the cantilever beam problem. The cantilever
beam problem is described in detail in Section 21.6. Given input intervals of [1,10] on beam width and beam
thickness, we can see that the interval estimate of beam weight is approximately [1,100].
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# Dakota Input File: cantilever_ug _global_interval.in
strategy
single_method
tabular_graphics_data
tabular_graphics_file = ’"cantilever_ug_global_interval.dat’
method
global_interval_est ego
seed = 1234567 rng rnum2
#output verbose
variables
continuous_interval_uncertain = 2
num_intervals =11
interval_probs = 1.0 1.0
lower_bounds = 1. 1.
upper_bounds = 10. 10
descriptors 'w’ ’t’
continuous_state = 4
initial_state = 40000. 29.E+6 500. 1000.
descriptors = 'R’" 'E" 'X" 'Y’
interface
direct
analysis_driver = 'cantilever’
responses
response_functions = 3
response_descriptors = 'weight’ ’stress’ ’displ’
no_gradients
no_hessians
Figure 5.20: Dakota input file for performing UQ wusing interval analysis - see

Dakota/examples/users/cantilever_ug.global_interval.in

Min and Max estimated values for each response function:
weight: Min = 1.0000169352e+00 Max = 9.9999491948e+01
stress: Min = -9.7749994284e-01 Max = 2.1499428450e+01
displ: Min = -9.9315672724e-01 Max = 6.7429714485e+01

Figure 5.21: Excerpt of UQ output for interval example.
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5.7.2 Dempster-Shafer Theory of Evidence

We have chosen to pursue evidence theory at Sandia as a way to model epistemic uncertainty, in part because
evidence theory is a generalization of probability theory. Evidence theory is also referred to as Dempster-Shafer
theory or the theory of random sets [93]. This section focuses on the use of Dempster-Shafer evidence theory
for propagating epistemic uncertainties. When aleatory uncertainties are also present, we may choose either to
discretize the aleatory probability distributions into sets of intervals and treat them as well-characterized epis-
temic variables, or we may choose to segregate the aleatory uncertainties and treat them within an inner loop.
A nested Dempster-Shafer approach for propagating mixed aleatory and epistemic uncertainty is described in
Section 16.1.3.

In evidence theory, there are two complementary measures of uncertainty: belief and plausibility. Together, belief
and plausibility can be thought of as defining lower and upper bounds, respectively, on probabilities. Belief and
plausibility define the lower and upper limits or intervals on probability values. Typical plots of cumulative and
complementary cumulative belief and plausibility functions are shown in Figure 5.22 [67]. In evidence theory,
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Figure 5.22: Example cumulative belief and plausibility distribution functions on left; complementary cumulative
belief and plausibility distribution functions on right

it is not possible to specify one probability value. Instead, there is a range of values that is consistent with the
evidence. The range of values is defined by belief and plausibility. Note that no statement or claim is made about
one value within an interval being more or less likely than any other value.

In Dempster-Shafer evidence theory, the uncertain input variables are modeled as sets of intervals. The user
assigns a basic probability assignment (BPA) to each interval, indicating how likely it is that the uncertain in-
put falls within the interval. The BPAs for a particular uncertain input variable must sum to one. The inter-
vals may be overlapping, contiguous, or have gaps. In Dakota, an interval uncertain variable is specified as
interval_uncertain. When one defines an interval type variable in Dakota, it is also necessary to specify
the number of intervals defined for each variable with iuv_num_intervals as well the basic probability assign-
ments per interval, iuv_interval_probs, and the associated bounds per each interval, iuv_interval_bounds.
Figure 5.23 shows the input specification for interval uncertain variables. The example has two epistemic uncer-
tain interval variables. The first uncertain variable has three intervals and the second has two. The basic probability
assignments for the first variable are 0.5, 0.1, and 0.4, while the BPAs for the second variable are 0.7 and 0.3.
Note that it is possible (and often the case) to define an interval uncertain variable with only ONE interval. This
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means that you only know that the possible value of that variable falls within the interval, and the BPA for that
interval would be 1.0. In the case we have shown, the interval bounds on the first interval for the first variable are
0.6 and 0.9, and the bounds for the second interval for the first variable are 0.1 to 0.5, etc.

# Dakota Input File: textbook_ug glob_evidence.in
strategy
single_method
tabular_graphics_data
tabular_graphics_file = ’textbook_ug _glob_evidence.dat’

method
global_evidence lhs
samples = 1000
seed = 59334 rng rnum2
response_levels = 0.001 0.03 0.2 0.8 0.001 0.2 0.6 0.8
probability_levels = 0.25 0.5 0.75 0.25 0.5 0.75
distribution cumulative
#output verbose

variables
continuous_interval_uncertain = 2
num_intervals = 3 2
interval_probs
lower_bounds
upper_bounds =

Il
o O o
© o o
o o o
o e
= o o

o
DR
o o o
® o W

interface
direct
analysis_driver = ’text_book’

responses
response_functions = 2
no_gradients
no_hessians

Figure 5.23: Dakota input file for UQ example wusing Evidence Theory - see
Dakota/examples/users/textbook_ug.glob_evidence.in

Once the intervals, the BPAs, and the interval bounds are defined, the user can run an epistemic analysis by
specifying the method as either global_evidence or local_evidence in the Dakota input file. Both
of these methods perform Dempster-Shafer calculations: the difference is that the local method uses a local
optimization algorithm to calculate the interval bounds and the global method uses either sampling or a global
optimization approach to calculate an interval bound. These differences are discussed in more detail below. The
intervals and their associated BPAs are then propagated through the simulation to obtain cumulative distribution
functions on belief and plausibility. As mentioned above, belief is the lower bound on a probability estimate that
is consistent with the evidence, and plausibility is the upper bound on a probability estimate that is consistent with
the evidence.

Figure 5.24 shows results for the first response function obtained when running the example in Figure 5.23. In
this example, there are 6 output intervals (as a result of the 2 interval input variables with 3 and 2 intervals, re-
spectively). The output intervals are ordered to obtain cumulative bound functions for both belief and plausibility.
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The cumulative distribution function is presented for both belief (CBF) and plausibility (CPF). The CBF value is
the cumulative belief corresponding to a certain output value. For example, the belief that the output value is less
than or equal to 0.2 for response 1 is 0.27, and the plausibility that the output is less than or equal to 0.2 is 1 for
response 1. The belief that the output value is less than 0.6217 is 0.75, while the plausbility that the output is less
than 0.0806 is 0.75. The CBF and CPF may be plotted on a graph and interpreted as bounding the cumulative
distribution function (CDF), which is the probability that the output is less than or equal to a certain value. The
interval bounds on probability values show the value of epistemic uncertainty analysis: the intervals are usually
much larger than expected, giving one a truer picture of the total output uncertainty caused by lack of knowledge
or information about the epistemic input quantities.

Belief and Plausibility for each response function:

Cumulative Belief/Plausibility Functions (CBF/CPF) for response_fn_1:
Response Level Belief Prob Level Plaus Prob Level

1.0000000000e-03 0.0000000000e+00 0.0000000000e+00

3.0000000000e-02 0.0000000000e+00 2.7000000000e-01

2.0000000000e-01 2.7000000000e-01 1.0000000000e+00

8.0000000000e-01 9.3000000000e-01 1.0000000000e+00

r

Probability Level Belief Resp Level Plaus Resp Level

2.5000000000e-01 2.6187288772e-01 6.2609206069e-02
5.0000000000e-01 2.9829775860e-01 6.3736734971e-02
7.5000000000e-01 6.2173551556e-01 8.0596931719e-02

Figure 5.24: Results of an Epistemic Uncertainty Quantification using Evidence Theory.

As in other nondeterministic methods, with 1ocal_evidence or global_evidence, one can specify prob-
ability levels and response levels. If response levels are specified, the belief and plausibility function values
corresponding to those response levels are calculated (see Belief Prob Level and Plaus Prob Level in the tables
shown in Figure 5.24). Similarly, if probability levels are specified, these are first interpreted to be belief val-
ues, and the corresponding response levels are calculated (see Belief Resp Level); then they are interpreted to
be plausibility values and the corresponding response levels are calculated (see Plaus Resp Level in the table in
Figure 5.24). We have recently added the capability to support generalized reliability mappings in the evidence
methods. If the user specifies a generalized reliability level, it will be first converted to a probability, then inter-
preted as a belief and plausibility and the corresponding response levels will be calculated. Likewise, if response
levels are specified, the corresponding belief and plausibility values will be mapped to bounds on the generalized
reliability levels.

To elaborate on the differences between global_evidence and local_evidence: both of these methods
take the Dempster-Shafer structures specified on the inputs and calculate a resulting Dempster-Shafer structure on
the outputs (e.g. a cumulative belief and plausibility function). To calculate the belief and plausibility measures, it
is necessary to calculate the minimum and maximum of the response function in each “interval cell combination.”
For example, in a two variable problem, if the first variable had three intervals and associated BPAs assigned and
the second variable had two intervals and associated BPAs assigned, there would be 6 interval cells in total. In
each of these six cells, one needs to identify a minimum and maximum value of the response function. This is
easy to do if the function is monotonic in both variables, but in general it is not. We offer the capability to use
local optimization methods to calculate these bounds: 1ocal_evidence allows the user to specify either sqp
which is sequential quadratic programming, or nip which is a nonlinear interior point method. We also offer
the capability to use global methods to assess these interval cell bounds. global_evidence allows the user
to specify either 1hs, which performs Latin Hypercube Sampling and takes the minimum and maximum of the
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samples within each cell as the bounds (no optimization is performed) or ego. In the case of ego, the efficient
global optimization method is used to calculate bounds. The ego method is described in Section 8.4. Note that
for a situation with many uncertain variables, each with a fairly complicated Dempster-Shafer structure described
by many intervals, there will be a huge number of interval calls, and the overall process of performing Dempster-
Shafer analysis will be extremely expensive. Reference [1 15] provides more details about the implementation of
the optimization methods to perform Dempster-Shafer calculations, as well as comparisons on test problems.

5.8 Bayesian Calibration Methods

We have two preliminary implementations of Bayesian calibration methods in Dakota, where a “prior distribution”
on a parameter is updated through a Bayesian framework involving experimental data and a likelihood function.
The theory behind Bayesian methods is best described in other sources [75] and only a brief summary is given
here. In Bayesian methods, uncertain parameters are characterized by probability density functions. These proba-
bility densities functions define the permissible parameter values - the support, as well as the relative plausibility
of each permissible parameter value. In the context of calibration or any inference step, the probability density
function that describes knowledge before the incorporation of data is called the prior, fg ().

When data is available, the likelihood function describes how well each parameter value is supported by the data.
Bayes Theorem [72], shown in Equation 5.9, is used for inference: to derive the plausible parameter values, based
on the prior probability density and the data d. The result is the posterior parameter density of the parameters
fe|p (0]d). Itis interpreted the same way as the prior, but includes the information derived from the data.

fe (0) L (6;d)
fp(d)

The likelihood function is used to describe how well a model’s predictions are supported by the data. The likeli-
hood function can be written generally as:

feip (0]d) = (5.9)

L(0;d) = f(M(0) = d)

where 6 are the parameters of model M. The function f can greatly influence the results. The specific likelihood
functions used in this example were based on Gaussian probability density functions. This means that we assume
the difference between the model (e.g. computer simulation) and the experimental observations are Gaussian:

where ¢; is a random variable that can encompass both measurement errors on d; and modeling errors associated
with the simulation M (#). We further assume that all experiments and observations are independent. If we have n
observations, the probabilistic model defined by Eq. (5.10) results in a likelihood function for 6 that is the product
of n normal probability density functions as shown in Equation 5.11.

L£(6;d) = lj[l U\}% exp [—W] (5.11)

Markov Chain Monte Carlo (MCMC) is the standard method used to compute posterior parameter densities,
given the observational data and the priors. There are many references that describe the basic algorithm [44],
and in addition, the algorithms are an active research area. The variation used in Dakota is DRAM: Delayed
Rejection and Adaptive Metropolis [61]. Note that MCMC algorithms take tens or hundreds of thousands of
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steps to converge. Since each iteration involves an evaluation of the model M (#), often surrogate models of the
simulation model are employed.

As mentioned above, we have two implementations of a Bayesian calibration: one called QUESO and one called
GPMSA. They are specified with the bayes_calibration queso or bayes_calibration gpmsa, re-
spectively. The QUESO method uses components from the QUESO library (Quantification of Uncertainty for
Estimation, Simulation, and Optimization) developed at The University of Texas at Austin. The GPMSA calibra-
tion capability uses the GPMSA code developed at Los Alamos National Laboratory.

In the QUESO method, the user can run the MCMC sampling with the simulation model M (0) directly. However,
if the model is expensive, we recommend that the user employs a surrogate model (an emulator) because the Monte
Carlo Markov Chain will be much faster: the MCMC can generate thousands of samples on the emulator more
quickly. One can specify a Gaussian process, a polynomial chaos expansion or a stochastic collocation as the em-
ulator for the que so method. The specification details for these are listed in the Reference Manual. One can also
specify various settings for the MCMC DRAM sampling: the sampling can use a standard Metropolis-Hastings
algorithm or the adaptive Metropolis in which the covariance of the proposal density is updated adaptively. There
is also a setting to control the delayed rejection. Finally, there are two scale factors which control the scaling of
the problem. The 1ikelihood_scale is a number which multiplies the likelihood. This is useful for situations
with very small likelihoods (e.g. the model is either very far away from the data or there is a lot of data so the
likelihood function involves multiplying many likelihoods together and becomes very small). The second factor
is a proposal_covariance_scale which is a vector that controls the scaling of the proposal covariance
in the different input directions. This may be useful when the input variables being calibrated are of different
magnitudes: one may want to take a larger step in a direction with a larger magnitude, for example.

GPMSA is another code that provides the capability for Bayesian calibration. A key part of GPMSA is the
construction of an emulator from simulation runs collected at various settings of input parameters. The emulator
is a statistical model of the system response, and it is used to incorporate the observational data to improve system
predictions and constrain or calibrate the unknown parameters. The GPMSA code draws heavily on the theory
developed in the seminal Bayesian calibration paper by Kennedy and O’Hagan [75]. The particular approach
developed by the Los Alamos group is provided in [68]. GPMSA uses Gaussian process models in the emulation,
but the emulator is actually a set of basis functions (e.g. from a singular value decomposition) which have GPs
as the coefficients. One major difference between GPMSA and the QUESO implementation in Dakota is that the
QUESO implementation does not have an explicit “discrepancy” function § which models the difference between
the simulation and the observational data results in addition to the error term ¢, but GPMSA has a sophisticated
model for the discrepancy term. At this point, the GPMSA implementation in Dakota is an early prototype.

We briefly describe the process of running QUESO from Dakota. The user will create a Dakota input file such
as the one shown in 5.25. Note that the method is bayes_calibration queso, specifying the QUESO
algorithm. The number of samples indicates the number of samples that the MCMC algorithm will take, in this
case 5000 (this usually will need to be larger). For this example, we are using the t ext _book analytic example,
so we do not need to specify an emulator, but the lines commented out give an idea of the options if the user
wanted to specify an emulator. This example is using the full DRAM (delayed rejection adaptive metropolis).
The likelihood is scaled, but the proposal covariance is not unless the user uncomments that line. The calibration
terms in the responses section refers to the number of outputs that will be used in the calibration process: in this
case, it is just one. The calibration data file has the observational data: in this case, it is a freeform file (e.g. no
header or annotation) with ten experiments. For each experiment, there is one standard deviation value indicating
the error associated with that experiment.

When the input file shown in 5.25 is run, Dakota will run the MCMC algorithm and generate a posterior sample
of 6 in accordance with Bayes Theorem 5.9 and the likelihood function 5.11. The MCMC sample output is put
into a directory called outputData in the directory from which Dakota is run. In addition, the MCMC sample
chain is written to a file in the run directory called QuesoOutput.txt. The first columns of this file are the sample
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strategy,
single_method
tabular_graphics_data

method,
bayes_calibration queso
# emulator
# gp
# emulator_samples = 50
# points_file = 'ros.txt’ freeform
# pce
# sparse_grid_level = 3

samples = 5000 #seed = 348

rejection delayed

metropolis adaptive

likelihood_scale = 0.001

output verbose
#proposal_covariance_scale = 0.1 0.3

variables,
continuous_design = 2
grep ' lower_bounds = 0. 0.
upper_bounds = 3. 3.
initial point = 1. 1.

interface,
direct
analysis_driver = ’text_book’

responses,

num_calibration_terms 1

calibration_data_file = ’"testl0_sig.txt’
freeform
num_experiments = 10
num_std_deviations = 1

no_gradients

no_hessians

Figure 5.25: Dakota input file for UQ example using Bayesian Calibration
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inputs, the next columns are the responses, and the final column is the log of the likelihood.

We expect to continue development of Bayesian calibration methods, so check for updates to this capability. The
Bayesian capability in Dakota currently relies on the QUESO library developed by The University of Texas at
Austin. This integrated capability is still in prototype form and available to close collaborators of the Dakota team.
If you are interested in this capability, contact the Dakota developers at dakota-developers @development.sandia.gov.

5.9 Uncertainty Quantification Usage Guidelines

The choice of uncertainty quantification method depends on how the input uncertainty is characterized, the com-
putational budget, and the desired output accuracy. The recommendations for UQ methods are summarized in
Table 5.2 and are discussed in the remainder of the section.

Table 5.2: Guidelines for UQ method selection.

Method Desired Problem Applicable Methods
Classification Characteristics
Sampling nonsmooth, multimodal response functions; sampling (Monte Carlo or LHS)
response evaluations are relatively inexpensive
Local smooth, unimodal response functions; local_reliability (MV, AMV/AMV?Z,
reliability larger sets of random variables; AMV+/AMV?2+, TANA, FORM/SORM)
estimation of tail probabilities
Global smooth or limited nonsmooth response; global reliability
reliability multimodal response; low dimensional;
estimation of tail probabilities
Stochastic smooth or limited nonsmooth response; polynomial _chaos,
expansions multimodal response; low dimensional; stoch_collocation
estimation of moments or moment-based metrics
Epistemic uncertainties are poorly characterized interval: local_interval _est,
global_interval _est, sampling;
BPA: local _evidence, global_evidence
Mixed UQ some uncertainties are poorly characterized nested UQ (IVP, SOP, DSTE) with epistemic
outer loop and aleatory inner loop, sampling

Sampling Methods

Sampling-based methods are the most robust uncertainty techniques available, are applicable to almost all simu-
lations, and possess rigorous error bounds; consequently, they should be used whenever the function is relatively
inexpensive to compute and adequate sampling can be performed. In the case of terascale computational simu-
lations, however, the number of function evaluations required by traditional techniques such as Monte Carlo and
Latin hypercube sampling (LHS) quickly becomes prohibitive, especially if tail statistics are needed.

Alternatively, one can apply the traditional sampling techniques to a surrogate function approximating the expen-
sive computational simulation (see Section 16.3). However, if this approach is selected, the user should be aware
that it is very difficult to assess the accuracy of the results obtained. Unlike the case of surrogate-based local
minimization (see Section 8.2), there is no simple pointwise calculation to verify the accuracy of the approxi-
mate results. This is due to the functional nature of uncertainty quantification, i.e. the accuracy of the surrogate
over the entire parameter space needs to be considered, not just around a candidate optimum as in the case of
surrogate-based local. This issue especially manifests itself when trying to estimate low probability events such
as the catastrophic failure of a system.
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Reliability Methods

Local reliability methods (e.g., MV, AMV/AMV?2, AMV+/AMV?+, TANA, and FORM/SORM) are more com-
putationally efficient in general than the sampling methods and are effective when applied to reasonably well-
behaved response functions; i.e., functions that are smooth, unimodal, and only mildly nonlinear. They can be
used to provide qualitative sensitivity information concerning which uncertain variables are important (with rel-
atively few function evaluations), or compute full cumulative or complementary cumulative response functions
(with additional computational effort). Since they rely on gradient calculations to compute local optima (most
probable points of failure), they scale well for increasing numbers of random variables, but issues with nons-
mooth, discontinuous, and multimodal response functions are relevant concerns. In addition, even if there is a
single MPP and it is calculated accurately, first-order and second-order integrations may fail to accurately capture
the shape of the failure domain. In these cases, adaptive importance sampling around the MPP can be helpful.
Overall, local reliability methods should be used with some care and their accuracy should be verified whenever
possible.

An effective alternative to local reliability analysis when confronted with nonsmooth, multimodal, and/or highly
nonlinear response functions is efficient global reliability analysis (EGRA). This technique employs Gaussian
process global surrogate models to accurately resolve the failure domain and then employs multimodal adaptive
importance sampling to resolve the probabilities. For relatively low dimensional problems (i.e, on the order
of 10 variables), this method displays the efficiency of local reliability analysis with the accuracy of exhaustive
sampling. While extremely promising, this method is still relatively new and is the subject of ongoing refinements
as we deploy it to additional applications.

Stochastic Expansions Methods

The next class of UQ methods available in Dakota is comprised of stochastic expansion methods (polynomial
chaos and stochastic collocation), which are general purpose techniques provided that the response functions pos-
sess finite second order moments. Further, these methods capture the underlying functional relationship between a
key response metric and its random variables, rather than just approximating statistics such as mean and standard
deviation. This class of methods parallels traditional variational methods in mechanics; in that vein, efforts are
underway to compute rigorous error bounds of the approximations produced by the methods. Another strength of
these methods is their potential use in a multiphysics environment as a means to propagate the uncertainty through
a series of simulations while retaining as much information as possible at each stage of the analysis. The current
challenge in the development of these methods, as for other global surrogate-based methods, is effective scaling
for large numbers of random variables. Recent advances in adaptive collocation and sparsity detection methods
address some of the scaling issues for stochastic expansions.

Epistemic Uncertainty Quantification Methods

The final class of UQ methods available in Dakota are focused on epistemic uncertainties, or uncertainties re-
sulting from a lack of knowledge. In these problems, the assignment of input probability distributions when
data is sparse can be somewhat suspect. One approach to handling epistemic uncertainties is interval analysis
(Local_interval_est and global_interval_est), where a set of intervals on inputs, one interval for
each input variable, is mapped to a set of intervals on outputs. To perform this process efficiently, optimiza-
tion methods can be used. Another related technique is Dempster-Shafer theory of evidence (Dakota methods
local_evidence and global_evidence), where multiple intervals per input variable (which can be over-
lapping, contiguous, or disjoint) are propagated, again potentially using optimization methods. The choice be-
tween local or global optimization methods for interval computation is governed by the same issues described in
Section 6.4.

Mixed Aleatoric and Epistemic Methods

For problems with a mixture of epistemic and aleatoric uncertainties, it is desirable to segregate the two uncer-
tainty types within a nested analysis, allowing stronger probabilistic inferences for the portion of the problem
where they are appropriate. In this nested approach, an outer epistemic level selects realizations of epistemic
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parameters (augmented variables) and/or realizations of random variable distribution parameters (inserted vari-
ables). These realizations define the objective probabilistic analysis to be performed on the inner aleatoric level.
In the case where the outer loop involves propagation of subjective probability, the nested approach is known
as second-order probability and the study generates a family of CDF/CCDF respresentations known as a “horse
tail” plot. In the case where the outer loop is an interval propagation approach (Local_interval_est or
global_interval_est), the nested approach is known as interval-valued probability (see also Section 9.5) .
In the case where the outer loop is an evidence-based approach (local_evidence or global_evidence),
the approach generates epistemic belief and plausibility bounds on aleatory statistics.
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Chapter 6
Optimization Capabilities

Optimization algorithms work to minimize (or maximize) an objective function, typically calculated by the user
simulation code, subject to constraints on design variables and responses. Available approaches in Dakota include
well-tested, proven gradient-based, derivative-free local, and global methods for use in science and engineering
design applications. Dakota also offers more advanced algorithms, e.g., to manage multi-objective optimization or
perform surrogate-based minimization. This chapter summarizes optimization problem formulation, standard al-
gorithms available in Dakota (mostly through included third-party libraries, see 6.5), some advanced capabilities,
and offers usage guidelines.

6.1 Optimization Formulations

This section provides a basic introduction to the mathematical formulation of optimization, problems. The primary
goal of this section is to introduce terms relating to these topics, and is not intended to be a description of theory
or numerical algorithms. For further details, consult [6], [46], [62], [92], and [122].

A general optimization problem is formulated as follows:

minimize: f(x)
x € R"
subject to: gr <gx) <gy
h(x) =h; (6.1

ar <Ax<ay
AeX = as

X <x <Xy

where vector and matrix terms are marked in bold typeface. In this formulation, x = [z1, 2, ..., Z,] is an n-
dimensional vector of real-valued design variables or design parameters. The n-dimensional vectors, x;, and X/,
are the lower and upper bounds, respectively, on the design parameters. These bounds define the allowable values
for the elements of x, and the set of all allowable values is termed the design space or the parameter space. A
design point or a sample point is a particular set of values within the parameter space.
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The optimization goal is to minimize the objective function, f(x), while satisfying the constraints. Constraints
can be categorized as either linear or nonlinear and as either inequality or equality. The nonlinear inequality
constraints, g(x), are ‘“2-sided,” in that they have both lower and upper bounds, g;, and g, respectively. The
nonlinear equality constraints, h(x), have target values specified by h;. The linear inequality constraints create
a linear system A;x, where A; is the coefficient matrix for the linear system. These constraints are also 2-sided
as they have lower and upper bounds, ay, and ay, respectively. The linear equality constraints create a linear
system A .x, where A, is the coefficient matrix for the linear system and a; are the target values. The constraints
partition the parameter space into feasible and infeasible regions. A design point is said to be feasible if and only
if it satisfies all of the constraints. Correspondingly, a design point is said to be infeasible if it violates one or
more of the constraints.

Many different methods exist to solve the optimization problem given by Equation 6.1, all of which iterate on x in
some manner. That is, an initial value for each parameter in x is chosen, the response quantities, f(x), g(x), h(x),
are computed, often by running a simulation, and some algorithm is applied to generate a new x that will either
reduce the objective function, reduce the amount of infeasibility, or both. To facilitate a general presentation of
these methods, three criteria will be used in the following discussion to differentiate them: optimization problem
type, search goal, and search method.

The optimization problem type can be characterized both by the types of constraints present in the problem
and by the linearity or nonlinearity of the objective and constraint functions. For constraint categorization, a hi-
erarchy of complexity exists for optimization algorithms, ranging from simple bound constraints, through linear
constraints, to full nonlinear constraints. By the nature of this increasing complexity, optimization problem cat-
egorizations are inclusive of all constraint types up to a particular level of complexity. That is, an unconstrained
problem has no constraints, a bound-constrained problem has only lower and upper bounds on the design pa-
rameters, a linearly-constrained problem has both linear and bound constraints, and a nonlinearly-constrained
problem may contain the full range of nonlinear, linear, and bound constraints. If all of the linear and nonlinear
constraints are equality constraints, then this is referred to as an equality-constrained problem, and if all of the
linear and nonlinear constraints are inequality constraints, then this is referred to as an inequality-constrained
problem. Further categorizations can be made based on the linearity of the objective and constraint functions. A
problem where the objective function and all constraints are linear is called a linear programming (LP) problem.
These types of problems commonly arise in scheduling, logistics, and resource allocation applications. Likewise,
a problem where at least some of the objective and constraint functions are nonlinear is called a nonlinear pro-
gramming (NLP) problem. These NLP problems predominate in engineering applications and are the primary
focus of Dakota.

The search goal refers to the ultimate objective of the optimization algorithm, i.e., either global or local optimiza-
tion. In global optimization, the goal is to find the design point that gives the lowest feasible objective function
value over the entire parameter space. In contrast, in local optimization, the goal is to find a design point that is
lowest relative to a “nearby” region of the parameter space. In almost all cases, global optimization will be more
computationally expensive than local optimization. Thus, the user must choose an optimization algorithm with an
appropriate search scope that best fits the problem goals and the computational budget.

The search method refers to the approach taken in the optimization algorithm to locate a new design point that
has a lower objective function or is more feasible than the current design point. The search method can be
classified as either gradient-based or nongradient-based. In a gradient-based algorithm, gradients of the response
functions are computed to find the direction of improvement. Gradient-based optimization is the search method
that underlies many efficient local optimization methods. However, a drawback to this approach is that gradients
can be computationally expensive, inaccurate, or even nonexistent. In such situations, nongradient-based search
methods may be useful. There are numerous approaches to nongradient-based optimization. Some of the more
well known of these include pattern search methods (nongradient-based local techniques) and genetic algorithms
(nongradient-based global techniques).
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Because of the computational cost of running simulation models, surrogate-based optimization (SBO) methods
are often used to reduce the number of actual simulation runs. In SBO, a surrogate or approximate model is
constructed based on a limited number of simulation runs. The optimization is then performed on the surrogate
model. Dakota has an extensive framework for managing a variety of local, multipoint, global, and hierarchical
surrogates for use in optimization. Finally, sometimes there are multiple objectives that one may want to optimize
simultaneously instead of a single scalar objective. In this case, one may employ multi-objective methods that are
described in Section 6.3.1.

This overview of optimization approaches underscores that no single optimization method or algorithm works
best for all types of optimization problems. Section 6.4 offers guidelines for choosing a Dakota optimization
algorithm best matched to your specific optimization problem.

6.1.1 Constraint Considerations

Dakota’s input commands permit the user to specify two-sided nonlinear inequality constraints of the form gy, <
9i(x) < gu,, as well as nonlinear equality constraints of the form h;(x) = h;;. Some optimizers (e.g., npsol_,
optpp., soga, and moga methods) can handle these constraint forms directly, whereas other optimizers (e.g.,
asynch_pattern_search, dot., and conmin_) require Dakota to perform an internal conversion of all
constraints to one-sided inequality constraints of the form g;(x) < 0. In the latter case, the two-sided inequality
constraints are treated as g;(x) — gy, < 0 and gz, — g;(x) < 0 and the equality constraints are treated as h;(x) —
hy, < 0and by, — hj(x) < 0. The situation is similar for linear constraints: asynch_pattern_search,
npsol_, optpp., soga, and moga methods support them directly, whereas dot_ and conmin_ methods do
not. For linear inequalities of the form ay, < aiTx < ay, and linear equalities of the form aiTx = ay,, the
nonlinear constraint arrays in dot - and conmin_ methods are further augmented to include al x — ay;, < 0 and
ar, —a; x < 0 in the inequality case and a x — a;, < 0 and a;, — al x < 0 in the equality case. Awareness
of these constraint augmentation procedures can be important for understanding the diagnostic data returned
from the dot_ and conmin_ methods. Other optimizers fall somewhere in between. n1pgl_ methods support
nonlinear equality constraints h;(x) = 0 and nonlinear one-sided inequalities g;(x) > 0, but does not natively
support linear constraints. Constraint mappings are used with NLPQL for both linear and nonlinear cases. Most
coliny_methods now support two-sided nonlinear inequality constraints and nonlinear constraints with targets,
but do not natively support linear constraints.

When gradient and Hessian information is used in the optimization, derivative components are most commonly
computed with respect to the active continuous variables, which in this case are the continuous design variables.
This differs from parameter study methods (for which all continuous variables are active) and from nondeter-
ministic analysis methods (for which the uncertain variables are active). Refer to Section 12.3 for additional
information on derivative components and active continuous variables.

6.2 Optimizing with Dakota: Choosing a Method

This section summarizes the optimization methods available in Dakota. We group them according to search
method and search goal and establish their relevance to types of problems. For a summary of this discussion, see
Section 6.4.
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6.2.1 Gradient-Based Local Methods

Gradient-based optimizers are best suited for efficient navigation to a local minimum in the vicinity of the ini-
tial point. They are not intended to find global optima in nonconvex design spaces. For global optimization
methods, see 6.2.3. Gradient-based optimization methods are highly efficient, with the best convergence rates
of all of the local optimization methods, and are the methods of choice when the problem is smooth, unimodal,
and well-behaved. However, these methods can be among the least robust when a problem exhibits nonsmooth,
discontinuous, or multimodal behavior. The derivative-free methods described in 6.2.2 are more appropriate for
problems with these characteristics.

Gradient accuracy is a critical factor for gradient-based optimizers, as inaccurate derivatives will often lead to
failures in the search or pre-mature termination of the method. Analytic gradients and Hessians are ideal but often
unavailable. If analytic gradient and Hessian information can be provided by an application code, a full Newton
method will achieve quadratic convergence rates near the solution. If only gradient information is available and
the Hessian information is approximated from an accumulation of gradient data, the superlinear convergence rates
can be obtained. It is most often the case for engineering applications, however, that a finite difference method
will be used by the optimization algorithm to estimate gradient values. Dakota allows the user to select the step
size for these calculations, as well as choose between forward-difference and central-difference algorithms. The
finite difference step size should be selected as small as possible, to allow for local accuracy and convergence, but
not so small that the steps are “in the noise.” This requires an assessment of the local smoothness of the response
functions using, for example, a parameter study method. Central differencing will generally produce more reliable
gradients than forward differencing but at roughly twice the expense.

Gradient-based methods for nonlinear optimization problems can be described as iterative processes in which a
sequence of subproblems, usually which involve an approximation to the full nonlinear problem, are solved until
the solution converges to a local optimum of the full problem. The optimization methods available in Dakota fall
into several categories, each of which is characterized by the nature of the subproblems solved at each iteration.

6.2.1.1 Method Descriptions

Conjugate Gradient methods require first derivative information and can only be applied to unconstrained prob-
lems. The subproblems entail minimizing a quadratic function over a space defined by the gradient and directions
that are mutually conjugate with respect to the Hessian, though the Hessian is never computed. There are several
variants of how those directions are defined. Those available in Dakota are the Fletcher-Reeves conjugate gradient
method (conmin_frcg and dot_frcg [123]) and the Polak-Ribiere conjugate gradient method (optpp-cg).
We here provide a caution regarding dot_frcg. In DOT Version 4.20, we have noticed inconsistent behavior of
this algorithm across different versions of Linux. Our best assessment is that it is due to different treatments of
uninitialized variables. As we do not know the intention of the code authors and maintaining DOT source code
is outside of the Dakota project scope, we have not made nor are we recommending any code changes to address
this. However, all users who use dot_frcgin DOT Version 4.20 should be aware that results may not be reliable.

Sequential Quadratic Programming (SQP) methods are appropriate for nonlinear optimization problems with
nonlinear constraints. Each subproblem involves minimizing a quadratic approximation the Lagrangian subject
to linearized constraints. Only gradient information is required; Hessians are approximated by low-rank updates
defined by the step taken at each iterations. It is important to note that while the solution found by an SQP method
will respect the constraints, the intermediate iterates may not. SQP methods available in Dakota are dot_sqgp,
nlpgl_sqp, and npsol_sqgp [45]. The particular implementation in nlpgl_sgp [101] uses a variant with
distributed and non-monotone line search. Thus, this variant is designed to be more robust in the presence of
inaccurate or noisy gradients common in many engineering applications. Also available is a method related to
SQP: sequential linear programming (dot_s1p).
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Newton Methods can be applied to nonlinear optimization problems with nonlinear constraints. The subproblems
associated with these methods entail finding the solution to a linear system of equations derived by setting the
derivative of a second-order Taylor series expansion to zero. Unlike SQP methods, Newton methods maintain
feasibility over the course of the optimization iterations. The variants of this approach correspond to the amount
of derivative information provided by the user. The full Newton method (optpp-newt on) expects both gradients
and Hessians to be provided. Quasi-Newton methods (optpp_g-newton, dot_bfgs) expect only gradients.
The Hessian is approximated by the Broyden-Fletcher-Goldfarb-Shanno (BFGS) low-rank updates. Finally, the
finite difference Newton method (optpp-fd_newton) expects only gradients and approximates the Hessian
with second-order finite differences.

Method of Feasible Directions (MFD) methods are appropriate for nonlinear optimization problems with non-
linear constraints. These methods ensure that all iterates remain feasible. Dakota includes conmin_mfd [121]
and dot _mmfd One observed drawback to conmin_mfd is that it does a poor job handling equality constraints.
dot_mmfd does not suffer from this problem, nor do other methods for constrained problems.

6.2.1.2 Example

We refer the reader to Section 2.3.3 for this example.

6.2.2 Derivative-Free Local Methods

Derivative-free methods can be more robust and more inherently parallel than gradient-based approaches. They
can be applied in situations were gradient calculations are too expensive or unreliable. In addition, some derivative-
free methods can be used for global optimization which gradient-based techniques (see 6.2.1), by themselves,
cannot. For these reasons, derivative-free methods are often go-to methods when the problem may be nonsmooth,
multimodal, or poorly behaved. It is important to be aware, however, that they exhibit much slower convergence
rates for finding an optimum, and as a result, tend to be much more computationally demanding than gradient-
based methods. They often require from several hundred to a thousand or more function evaluations for local
methods, depending on the number of variables, and may require from thousands to tens-of-thousands of function
evaluations for global methods. Given the computational cost, it is often prudent to use derivative-free methods
to identify regions of interest and then use gradient-based methods to home in on the solution. In addition to
slow convergence, nonlinear constraint support in derivative-free methods is an open area of research and, while
supported by many methods in Dakota, is not as refined as constraint support in gradient-based methods.

6.2.2.1 Method Descriptions

Pattern Search methods can be applied to nonlinear optimization problems with nonlinear. They generally walk
through the domain according to a defined stencil of search directions. These methods are best suited for effi-
cient navigation to a local minimum in the vicinity of the initial point; however, they sometimes exhibit limited
global identification abilities if the stencil is such that it allows them to step over local minima. There are two
main pattern search methods available in Dakota, and they vary according to richness of available stencil and the
way constraints supported. Asynchronous Parallel Pattern Search (APPS) [57] (asynch_pattern_search)
uses the coordinate basis as its stencil, and it handles nonlinear constraints explicitly through modification of
the coordinate stencil to allow directions that parallel constraints [58]. A second variant of pattern search,
coliny_pattern_search, has the option of using either a coordinate or a simplex basis as well as allow-
ing more options for the stencil to evolve over the course of the optimization. It handles nonlinear constriants
through the use of penalty functions.
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Simplex methods for nonlinear optimization problem are similar to pattern search methods, but their search
directions are defined by triangles that are reflected, expanded, and contracted across the variable space. The
two simplex-based methods available in Dakota are the Parallel Direct Search method [20] (optpp_pds) and the
Constrained Optimization BY Linear Approximations (COBYLA) (coliny_cobyla). The former handles only
bound constraints, while the latter handles nonlinear constraints. One drawback of both simplex-based methods
is that their current implementations do not allow them to take advantage of parallel computing resources via
Dakota’s infrastructure.

A Greedy Search Heuristic for nonlinear optimization problems is captured in the Solis-Wets (coliny_solis_wets)
method. This method takes a sampling-based approach in order to identify search directions. Note that one ob-
served drawback to coliny_solis_wetsisthat it does a poor job solving problems with nonlinear constraints.

This algorithm is also not implemented in such a way as to take advantage of parallel computing resources via
Dakota’s infrastructure.

6.2.2.2 Example

The Dakota input file shown in Figure 6.1 applies a pattern search method to minimize the Rosenbrock function.
We note that this example is used as a means of demonstrating the contrast between input files for gradient-based
and derivative-free optimization. Since derivatives can be computed analytically and efficiently, the preferred
approach to solving this problem is a gradient-based method.

The Dakota input file shown in Figure 6.1 is similar to the input file for the gradient-based optimization, ex-
cept it has a different set of keywords in the method block of the input file, and the gradient specification in
the responses block has been changed to no_gradients. The pattern search optimization algorithm used,
coliny_pattern_search is part of the SCOLIB library [64]. See the Dakota Reference Manual [3] for more
information on the methods block commands that can be used with SCOLIB algorithms.

For this run, the optimizer was given an initial design point of (x1,z2) = (0.0,0.0) and was limited to 2000
function evaluations. In this case, the pattern search algorithm stopped short of the optimum at (z1,z2) =
(1.0, 1, 0), although it was making progress in that direction when it was terminated. (It would have reached the
minimum point eventually.)

The iteration history is provided in Figures 6.2(a) and (b), which show the locations of the function evaluations
used in the pattern search algorithm. Figure 6.2(c) provides a close-up view of the pattern search function evalua-
tions used at the start of the algorithm. The coordinate pattern is clearly visible at the start of the iteration history,
and the decreasing size of the coordinate pattern is evident at the design points move toward (z1, z2) = (1.0, 1.0).

While pattern search algorithms are useful in many optimization problems, this example shows some of the
drawbacks to this algorithm. While a pattern search method may make good initial progress towards an optimum,
it is often slow to converge. On a smooth, differentiable function such as Rosenbrock’s function, a nongradient-
based method will not be as efficient as a gradient-based method. However, there are many engineering design
applications where gradient information is inaccurate or unavailable, which renders gradient-based optimizers
ineffective. Thus, pattern search algorithms are often good choices in complex engineering applications when the
quality of gradient data is suspect.

6.2.3 Derivative-Free Global Methods

The discussion of derivative-free global methods is identical to that in 6.2.2, so we forego repeating it here. There
are two types of global optimization methods in Dakota.
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# Dakota Input File: rosen_opt_patternsearch.in
strategy
graphics
tabular_graphics_data
tabular_graphics_file = ’'rosen_opt_patternsearch.dat’
single_method

method

max_iterations = 1000

max_function_evaluations = 2000

coliny_pattern_search
solution_accuracy = le-4
initial_delta = 0.5
threshold_delta = le-4
exploratory_moves basic_pattern
contraction_factor = 0.75

model
single

variables
continuous_design =
initial_point 0
lower_bounds -2.0 -2.0
upper_bounds 2.0
descriptors rx1

interface
analysis_driver = ’'rosenbrock’
direct

responses
objective_functions = 1
no_gradients
no_hessians

Figure 6.1:  Rosenbrock pattern search optimization example: the Dakota input file - see
Dakota/examples/users/rosen_opt_patternsearch.in

6.2.3.1 Method Descriptions

Evolutionary Algorithms (EA) are based on Darwin’s theory of survival of the fittest. The EA algorithm starts
with a randomly selected population of design points in the parameter space, where the values of the design
parameters form a “genetic string,” analogous to DNA in a biological system, that uniquely represents each
design point in the population. The EA then follows a sequence of generations, where the best design points
in the population (i.e., those having low objective function values) are considered to be the most “fit” and are
allowed to survive and reproduce. The EA simulates the evolutionary process by employing the mathematical
analogs of processes such as natural selection, breeding, and mutation. Ultimately, the EA identifies a design point
(or a family of design points) that minimizes the objective function of the optimization problem. An extensive
discussion of EAs is beyond the scope of this text, but may be found in a variety of sources (cf., [62] pp. 149-
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Figure 6.2: Rosenbrock pattern search optimization example: (a) screen capture of the Dakota graphics, (b)
sequence of design points (dots) evaluated and (c) close-up view illustrating the shape of the coordinate pattern
used.

158; [54]). EAs available in Dakota include coliny_ea, soga, and moga. The latter is specifically designed
for multi-objective problems, discussed further in 6.3. All variants can optimize over discrete variables in addition
to continuous variables.

Dlvision of RECTangles (DIRECT) [40] balances local search in promising regions of the design space with
global search in unexplored regions. It adaptively subdivides the space of feasible design points to guarantee
that iterates are generated in the neighborhood of a global minimum in finitely many iterations. Dakota in-
cludes two implementations (ncsu_-direct and coliny_direct. In practice, DIRECT has proven an ef-
fective heuristic for many applications. For some problems, the ncsu_direct implementation has outper-
formed the coliny_direct implementation. ncsu._direct can accommodate only bound constraints, while
coliny_direct handles nonlinear constraints using a penalty formulation of the problem.
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6.2.3.2 Example

In contrast to pattern search algorithms, which are local optimization methods, evolutionary algorithms (EA) are
global optimization methods. As was described above for the pattern search algorithm, the Rosenbrock function
is not an ideal test problem for showcasing the capabilities of evolutionary algorithms. Rather, EAs are best suited
to optimization problems that have multiple local optima, and where gradients are either too expensive to compute
or are not readily available.

# Dakota Input File: rosen_opt_ea.in
strategy
graphics
tabular_graphics_data
tabular_graphics_file = ’'rosen_opt_ea.dat’
single_method

method
max_iterations = 100
max_function_evaluations = 2000

coliny_ea
seed = 11011011
population_size = 50
fitness_type merit_function
mutation_type offset_normal
mutation_rate 1.0
crossover_type two_point
crossover_rate 0.0
replacement_type chc = 10

model
single
variables
continuous_design = 2
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors rx1’ "x2"
interface
analysis_driver = ’rosenbrock’
direct
responses
objective_functions = 1

no_gradients
no_hessians

Figure 6.3: Rosenbrock evolutionary algorithm optimization example: the Dakota input file — see
Dakota/examples/users/rosen_opt_ea.in

Figure 6.3 shows a Dakota input file that uses an EA to minimize the Rosenbrock function. For this example
the EA has a population size of 50. At the start of the first generation, a random number generator is used to
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select 50 design points that will comprise the initial population. [A specific seed value is used in this example to
generate repeatable results, although, in general, one should use the default setting which allows the EA to choose
a random seed.] A two-point crossover technique is used to exchange genetic string values between the members
of the population during the EA breeding process. The result of the breeding process is a population comprised
of the 10 best “parent” design points (elitist strategy) plus 40 new “child” design points. The EA optimization
process will be terminated after either 100 iterations (generations of the EA) or 2,000 function evaluations. The
EA software available in Dakota provides the user with much flexibility in choosing the settings used in the
optimization process. See [3] and [64] for details on these settings.

The EA optimization results printed at the end of this file show that the best design point found was (z1, z2) =
(0.98,0.95). The file ea_tabular.dat.sav provides a listing of the design parameter values and objective
function values for all 2,000 design points evaluated during the running of the EA. Figure 6.4(a) shows the popu-
lation of 50 randomly selected design points that comprise the first generation of the EA, and Figure 6.4(b) shows
the final population of 50 design points, where most of the 50 points are clustered near (z1, z2) = (0.98,0.95).

((2)) rosenbrock | |
rosenbrock|. - -

® final pop
-2 -1

~| ' initial pop

Figure 6.4: Rosenbrock evolutionary algorithm optimization example: 50 design points in the (a) initial and (b)
final populations selected by the evolutionary algorithm.

As described above, an EA is not well-suited to an optimization problem involving a smooth, differentiable objec-
tive such as the Rosenbrock function. Rather, EAs are better suited to optimization problems where conventional
gradient-based optimization fails, such as situations where there are multiple local optima and/or gradients are
not available. In such cases, the computational expense of an EA is warranted since other optimization methods
are not applicable or impractical. In many optimization problems, EAs often quickly identify promising regions
of the design space where the global minimum may be located. However, an EA can be slow to converge to the
optimum. For this reason, it can be an effective approach to combine the global search capabilities of a EA with
the efficient local search of a gradient-based algorithm in a hybrid optimization strategy. In this approach, the op-
timization starts by using a few iterations of a EA to provide the initial search for a good region of the parameter
space (low objective function and/or feasible constraints), and then it switches to a gradient-based algorithm (us-
ing the best design point found by the EA as its starting point) to perform an efficient local search for an optimum
design point. More information on this hybrid approach is provided in Chapter 15.
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6.3 Additional Optimization Capabilities

Dakota provides several capabilities which extend the services provided by the optimization software packages
described in Sections 6.2.1 through 6.2.3. Those described in this section include:

e Multiobjective optimization: There are three capabilities for multiobjective optimization in Dakota. The
first is MOGA, described above in Section 6.2.3.1. The second is the Pareto-set strategy, described in
Chapter 15. The third is a weighting factor approach for multiobjective reduction, in which a composite
objective function is constructed from a set of individual objective functions using a user-specified set of
weighting factors. These latter two approaches work with any of the above single objective algorithms.
Future multiobjective response data transformations for goal programming, normal boundary intersection,
etc. are planned.

e Scaling, where any optimizer (or least squares solver described in Section 7.4), can accept user-specified
(and in some cases automatic or logarithmic) scaling of continuous design variables, objective functions (or
least squares terms), and constraints. Some optimization algorithms are sensitive to the relative scaling of
problem inputs and outputs, and this feature can help.

o Solvers in shared libraries: On computer systems that permit use of shared libraries (most modern sys-
tems), Dakota can avail itself of optimization solvers contained in shared libraries. This is a first step toward
allowing optional parts of Dakota, such as proprietary solvers, to be accessed from shared libraries.

The Strategy Chapter 15 offers details on the following approaches:

e Multilevel Hybrid Optimization: This strategy allows the user to specify a sequence of optimization
methods, with the results from one method providing the starting point for the next method in the sequence.
An example which is useful in many engineering design problems involves the use of a nongradient-based
global optimization method (e.g., genetic algorithm) to identify a promising region of the parameter space,
which feeds its results into a gradient-based method (quasi-Newton, SQP, etc.) to perform an efficient local
search for the optimum point.

e Multistart Local Optimization: This strategy uses many local optimization runs (often gradient-based),
each of which is started from a different initial point in the parameter space. This is an attractive strategy in
situations where multiple local optima are known to exist or may potentially exist in the parameter space.
This approach combines the efficiency of local optimization methods with the parameter space coverage of
a global stratification technique.

e Pareto-Set Optimization: The Pareto-set optimization strategy allows the user to specify different sets of
weights for the individual objective functions in a multiobjective optimization problem. Dakota executes
each of these weighting sets as a separate optimization problem, serially or in parallel, and then outputs the
set of optimal designs which define the Pareto set. Pareto set information can be useful in making trade-off
decisions in engineering design problems.

6.3.1 Multiobjective Optimization

Multiobjective optimization means that there are two or more objective functions that you wish to optimize simul-
taneously. Often these are conflicting objectives, such as cost and performance. The answer to a multi-objective
problem is usually not a single point. Rather, it is a set of points called the Pareto front. Each point on the Pareto
front satisfies the Pareto optimality criterion, which is stated as follows: a feasible vector X * is Pareto optimal
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if there exists no other feasible vector X which would improve some objective without causing a simultaneous
worsening in at least one other objective. Thus, if a feasible point X’ exists that CAN be improved on one or more
objectives simultaneously, it is not Pareto optimal: it is said to be “dominated” and the points along the Pareto
front are said to be “non-dominated.”

There are three capabilities for multiobjective optimization in Dakota. First, there is the MOGA capability de-
scribed previously in Section 6.2.3.1. This is a specialized algorithm capability. The second capability involves
the use of response data transformations to recast a multiobjective problem as a single-objective problem. Cur-
rently, Dakota supports the simple weighted sum approach for this transformation, in which a composite objective
function is constructed from a set of individual objective functions using a user-specified set of weighting factors.
This approach is optimization algorithm independent, in that it works with any of the optimization methods listed
previously in this chapter. The third capability is the Pareto-set optimization strategy described in Section 15.4.
This capability also utilizes the multiobjective response data transformations to allow optimization algorithm in-
dependence; however, it builds upon the basic approach by computing sets of optima in order to generate a Pareto
trade-off surface.

In the multiobjective transformation approach in which multiple objectives are combined into one, an appropriate
single-objective optimization technique is used to solve the problem. The advantage of this approach is that one
can use any number of optimization methods that are especially suited for the particular problem class. One
disadvantage of the weighted sum transformation approach is that a linear weighted sum objective will only find
one solution on the Pareto front. Since each optimization of a single weighted objective will find only one point
near or on the Pareto front, many optimizations need to be performed to get a good parametric understanding of
the influence of the weights. Thus, this approach can become computationally expensive.

The selection of a multiobjective optimization problem is made through the specification of multiple objective
functions in the responses keyword block (i.e., the objective_functions specification is greater than 1).
The weighting factors on these objective functions can be optionally specified using the weight s keyword (the
default is equal weightings). The composite objective function for this optimization problem, F’, is formed using
these weights as follows: F' = ZkRzl wy, fx, where the fj, terms are the individual objective function values, the
wy, terms are the weights, and R is the number of objective functions. The weighting factors stipulate the relative
importance of the design concerns represented by the individual objective functions; the higher the weighting
factor, the more dominant a particular objective function will be in the optimization process. Constraints are not
affected by the weighting factor mapping; therefore, both constrained and unconstrained multiobjective optimiza-
tion problems can be formulated and solved with Dakota, assuming selection of an appropriate constrained or
unconstrained single-objective optimization algorithm. Future multiobjective response data transformations for
goal programming, normal boundary intersection, etc. are planned.

6.3.1.1 Multiobjective Example 1

Figure 6.5 shows a Dakota input file for a multiobjective optimization problem based on the “textbook” test prob-
lem. In the standard textbook formulation, there is one objective function and two constraints. In the multiobjec-
tive textbook formulation, all three of these functions are treated as objective functions (cbjective_functions
= 3), with weights given by the weight s keyword. Note that it is not required that the weights sum to a value of
one. The multiobjective optimization capability also allows any number of constraints, although none are included
in this example.

Figure 6.6 shows an excerpt of the results for this multiobjective optimization problem, with output in verbose
mode. The data for function evaluation 9 show that the simulator is returning the values and gradients of the three
objective functions and that this data is being combined by Dakota into the value and gradient of the composite
objective function, as identified by the header “Multiobjective transformation:”. This combination
of value and gradient data from the individual objective functions employs the user-specified weightings of . 7,
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# Dakota Input File: textbook_opt_multiobjl.in
strategy
single_method
tabular_graphics_data
tabular_graphics_file = ’textbook_opt_multiobjl.dat’

method
npsol_sgp
convergence_tolerance = 1.e-8

variables
continuous_design = 2
initial_point 0
upper_bounds 5.
lower_bounds 0
descriptors !

interface
fork asynchronous
analysis_driver= 'text_book’

responses
objective_functions = 3
weights = .7 .2 .1
analytic_gradients
no_hessians

Figure  6.5: Example Dakota input file for multiobjective
Dakota/examples/users/textbook_optmultiobjl.in

optimization

see
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Parameters for function evaluation 9:
5.9388064483e-01 x1
7.4158741198e-01 x2

(text_book /tmp/fileFNNH3v /tmp/fileRktLe9)
Removing /tmp/fileFNNH3v and /tmp/fileRktLe9

Active response data for function evaluation 9:
Active set vector = { 3 3 3 } Deriv vars vector = { 1 2 }
3.1662048106e-02 obj_fn_1
-1.8099485683e-02 obj_fn_2
2.5301156719e-01 obj_fn_3
[ =2.6792982175e-01 -6.9024137415e-02 ] obj_fn_1 gradient
[ 1.1877612897e+00 -5.0000000000e-01 ] obj_fn_ 2 gradient
[ =5.0000000000e-01 1.4831748240e+00 ] obj_fn_3 gradient

Multiobjective transformation:
4.3844693257e-02 obj_fn
[ 1.3827084219e-06 5.8620632776e-07 ] obj_fn gradient
7 1 1.0E+00 9 4.38446933E-02 1.5E-06 2 T TT

Exit NPSOL - Optimal solution found.

Final nonlinear objective value = 0.4384469E-01

Figure 6.6: Dakota results for the multiobjective optimization example.

.2, and . 1. Convergence to the optimum of the multiobjective problem is indicated in this case by the gradient
of the composite objective function going to zero (no constraints are active).

By performing multiple optimizations for different sets of weights, a family of optimal solutions can be generated
which define the trade-offs that result when managing competing design concerns. This set of solutions is referred
to as the Pareto set. Section 15.4 describes a solution strategy used for directly generating the Pareto set in order
to investigate the trade-offs in multiobjective optimization problems.

6.3.1.2 Multiobjective Example 2

This example illustrates the use of multi-objective optimization based on a genetic algorithm method. This method
is called moga. It is based on the idea that as the population evolves in a GA, solutions that are non-dominated are
chosen to remain in the population. The MOGA algorithm has separate fitness assessment and selection operators
called the domination_count fitness assessor and below_limit selector respectively. This approach of
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selection works especially well on multi-objective problems because it has been specifically designed to avoid
problems with aggregating and scaling objective function values and transforming them into a single objective.
Instead, the fitness assessor works by ranking population members such that their resulting fitness is a function of
the number of other designs that dominate them. The be low_1 imit selector then chooses designs by considering
the fitness of each. If the fitness of a design is above a certain limit, which in this case corresponds to a design
being dominated by more than a specified number of other designs, then it is discarded. Otherwise it is kept and
selected to go to the next generation. The one catch is that this selector will require that a minimum number of
selections take place. The shrinkage_percentage determines the minimum number of selections that will
take place if enough designs are available. It is interpreted as a percentage of the population size that must go on
to the subsequent generation. To enforce this, the below_1imit selector makes all the selections it would make
anyway and if that is not enough, it relaxes its limit and makes selections from the remaining designs. It continues
to do this until it has made enough selections. The moga method has many other important features. Complete
descriptions can be found in the Dakota Reference Manual [3].

We demonstrate the MOGA algorithm on three examples that are taken from a multiobjective evolutionary algo-
rithm (MOEA) test suite described by Van Veldhuizen et. al. in [13]. These three examples illustrate the different
forms that the Pareto set may take. For each problem, we describe the Dakota input and show a graph of the Pareto
front. These problems are all solved with the moga method. The first example is presented below, the other two
examples are presented in the additional examples chapter 21.7.1 and 21.7.2.

In Van Veldhuizen’s notation, the set of all Pareto optimal design configurations (design variable values only) is
denoted P* or P,y and is defined as:

P ={recQ|-32€Q f@)=flx)}

The Pareto front, which is the set of objective function values associated with the Pareto optimal design configu-
rations, is denoted PF* or PF,4e and is defined as:

PP = {a=f = (fila)..... fu(@)) |z € P}

The values calculated for the Pareto set and the Pareto front using the moga method are close to but not always
exactly the true values, depending on the number of generations the moga is run, the various settings governing
the GA, and the complexity of the Pareto set.

The first test problem is a case where P,,.,. is connected and P Fj,.,,. is concave. The problem is to simultaneously
optimize f; and f5 given three input variables, x1, z2, and x3, where the inputs are bounded by —4 < z; < 4:

Figure 6.7 shows an input file that demonstrates some of the multi-objective capabilities available with the moga
method.

In this example, the three best solutions (as specified by final_solutions =3) are written to the output.
Additionally, final results from moga are output to a file called finaldatal.dat in the directory in which you
are running. This finaldatal.dat file is simply a list of inputs and outputs. Plotting the output columns
against each other allows one to see the Pareto front generated by moga. Figure 6.8 shows an example of the
Pareto front for this problem. Note that a Pareto front easily shows the tradeoffs between Pareto optimal solutions.
For instance, look at the point with f1 and f2 values equal to (0.9, 0.23). One cannot improve (minimize) the value
of objective function f1 without increasing the value of f2: another point on the Pareto front, (0.63, 0.63) represents
a better value of objective f1 but a worse value of objective f2.

6.3.2 Optimization with User-specified or Automatic Scaling

Some optimization problems involving design variables, objective functions, or constraints on vastly different
scales may be solved more efficiently if these quantities are adjusted to a common scale (typically on the order
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# Dakota Input File: mogatestl.in

# timeout overrides: 0=TD300
strategy
single
graphics
tabular_graphics_data
tabular_graphics_file =

method
moga
output silent
seed = 10983
final_solutions = 3

max_function_evaluations = 2500

crossover_type shuffle_random

no_gradients
no_hessians

"mogatestl.dat’

initialization_type unique_random

num_offspring = 2 num_parents 2
crossover_rate = 0.8
mutation_type replace_uniform
mutation_rate = 0.1
fitness_type domination_count
replacement_type below_limit =
shrinkage_percentage = 0.9
convergence_type metric_tracker
percent_change = 0.05 num_generations = 40
variables
continuous_design = 3
initial_point 0 0 0
upper_bounds 4 4 4
lower_bounds -4 -4 -4
descriptors rx1’ rx2’  'x3’
interface
fork
analysis_driver = ’'mogatestl’
responses
objective_functions = 2

Figure 6.7:

Multiple objective genetic algorithm (MOGA) example:

the Dakota input file — see

Dakota/examples/users/mogatestl.in
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MOGA Test Problem #1 - Concave Pareto Frontier
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Figure 6.8: Multiple objective genetic algorithm (MOGA) example: Pareto front showing tradeoffs between
functions f1 and 2.

of unity). With any optimizer (or least squares solver described in Section 7.4), user-specified characteristic
value scaling may be applied to any of continuous design variables, functions/residuals, nonlinear inequality and
equality constraints, and linear inequality and equality constraints. Automatic scaling is available for variables or
responses with one- or two-sided bounds or equalities and may be combined with user-specified scaling values.
Logarithmic (log,) scaling is available and may also be combined with characteristic values. Log scaling is not
available for linear constraints. Moreover, when continuous design variables are log scaled, linear constraints are
not permitted in the problem formulation. Discrete variable scaling is not supported.

Scaling is enabled on a per-method basis for optimizers and least squares minimizers by including the scaling
keyword in the relevant met hod specification in the Dakota input deck. When scaling is enabled, variables, func-
tions, gradients, Hessians, etc., are transformed such that the optimizer iterates in scaled variable space, whereas
evaluations of the computational model as specified in the interface are performed on the original problem scale.
Therefore using scaling does not require rewriting the interface to the simulation code. When the scaling
keyword is omitted, all x_scale_types and »_scales specifications described below are ignored in the cor-
responding method, variables, and responses sections. When the method output_level is set above normal,
scaling initialization and diagnostic information will be printed.

Scaling for a particular variable or response type is enabled through the *_scale_types specification (see the
Reference Manual method section and references contained therein for a complete keyword list). Valid options
for this string specification include ' none’ (default), ' value’, "auto’, or ' log’, for no, characteristic
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value, automatic, or logarithmic scaling, respectively (although not all types are valid for scaling all entities). If a
single string is specified with any of these keywords it will apply to each component of the relevant vector, e.g.,
cdv_scale_types = ’value’ will enable characteristic value scaling for each continuous design variable.

The user may additionally specify no, one, or a vector of characteristic scale values through the x_scales
specification. These characteristic values are ignored for scaling type ' none’, required for ' value’, and
optional for “ auto’ and ' 1og’. If a single value is specified with any of these keywords it will apply to each
component of the relevant vector, e.g., cdv_scales = 3.0 will apply a characteristic scaling value of 3.0 to
each continuous design variable.

When scaling is enabled, the following procedures determine the transformations used to scale each component
of a variables or response vector. A warning is issued if scaling would result in division by a value smaller in
magnitude than 1.0el10+DBL_MIN. User-provided values violating this lower bound are accepted unaltered,
whereas for automatically calculated scaling, the lower bound is enforced.

e None (" none’): no scaling performed («_scales ignored) on this component.

e Characteristic value ( value’): the corresponding quantity is scaled (divided) by the required character-
istic value provided in the *_scales specification, and bounds are adjusted as necessary. If the value is
negative, the sense of inequalities are changed accordingly.

e Automatic (" auto’): First, any characteristic values from the optional *_scales specification are ap-
plied. Then, automatic scaling will be attempted according to the following scheme:

— two-sided bounds scaled into the interval [0,1];

— one-sided bounds or targets are scaled by a characteristic value to move the bound or target to 1, and
the sense of inequalities are changed if necessary;

— no bounds or targets: no automatic scaling possible for this component

Automatic scaling is not available for objective functions nor least squares terms since they lack bound
constraints. Further, when automatically scaled, linear constraints are scaled by characteristic values only,
not affinely scaled into [0,1].

e Logarithmic (* 1og’): First, any characteristic values from the optional »_scales specification are ap-
plied. Then, log;, scaling is applied. Logarithmic scaling is not available for linear constraints. Further,
when continuous design variables are log scaled, linear constraints are not allowed.

Scaling for linear constraints specified through 1inear_inequality._scalesorlinear_equality_scales
is applied after any (user-specified or automatic) continuous variable scaling. For example, for scaling mapping
unscaled continuous design variables x to scaled variables z:

@) — ]

j ?
T

jj_

where x?w is the final component multiplier and xjo the offset, we have the following matrix system for linear
inequality constraints

ar, < Ajx < ay
ar, < A; (diag(xn)Z + zo0) < ay
ar, — Aijzo < Adiag(zp)z < ay — Aizo
ap < Ak < ay,
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and user-specified or automatically computed scaling multipliers are applied to this final transformed system,
which accounts for any continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by characteristic values only, not affinely scaled into the interval [0, 1].

6.3.2.1 Scaling Example

Figure 6.9 demonstrates the use of several scaling keywords for the textbook optimization problem. The contin-
uous design variable x1 is scaled by a characteristic value of 4.0, whereas x2 is scaled automatically into [0, 1]
based on its bounds. The objective function will be scaled by a factor of 50.0, then logarithmically, the first
nonlinear constraint by a factor of 15.0, and the second nonlinear constraint is not scaled.

6.3.3 dl_solver — Solvers via Shared Libraries

On computer systems that permit use of shared libraries (most modern systems), Dakota can avail itself of opti-
mization solvers contained in shared libraries. This is a first step toward allowing optional parts of Dakota, such
as proprietary solvers, to be accessed from shared libraries. For example, the Dakota source distributions illustrate
making a sample shared-library interface to SNOPT [47], whose use would be specified by

method,
dl_solver = 'dl_snopt.dll’

The quoted string contains the name of the shared library, optionally followed by keyword assignments known to
the library, such as

method,
dl_solver = ’dl_snopt.dll outlev = 1’

which would turn on some diagnostic printing in the SNOPT example.

6.4 Optimization Usage Guidelines

In selecting an optimization method, important considerations include the type of variables in the problem (contin-
uous, discrete, mixed), whether a global search is needed or a local search is sufficient, and the required constraint
support (unconstrained, bound constrained, or generally constrained). Less obvious, but equally important, con-
siderations include the efficiency of convergence to an optimum (i.e., convergence rate) and the robustness of the
method in the presence of challenging design space features (e.g., nonsmoothness).

Table 6.1 provides a convenient reference for choosing an optimization method or strategy to match the charac-
teristics of the user’s problem, where blank fields inherit the value from above. With respect to constraint support,
it should be understood that the methods with more advanced constraint support are also applicable to the lower
constraint support levels; they are listed only at their highest level of constraint support for brevity.

Gradient-based Methods

Gradient-based optimization methods are highly efficient, with the best convergence rates of all of the optimization
methods. If analytic gradient and Hessian information can be provided by an application code, a full Newton
method will provide quadratic convergence rates near the solution. More commonly, only gradient information
is available and a quasi-Newton method is chosen in which the Hessian information is approximated from an
accumulation of gradient data. In this case, superlinear convergence rates can be obtained. These characteristics
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# Dakota Input File: rosen_opt_scaled.in
strategy
graphics
tabular_graphics_data
tabular_graphics_file = ’"rosen_opt_scaled.dat’
single_method

method
conmin_frcg
scaling
#output verbose

model
single
variables
continuous_design = 2
initial_point -1.2 1.0
lower_bounds -2.0 0.001
upper_bounds 2.0 2.0
descriptors rx1’ "x2"
scale_types = ’"value’ ’log’

scales = 4.0 0.1

interface
analysis_driver = ’rosenbrock’
direct
responses
objective_functions = 1
objective_function_scale_types = ’'value’
objective_function_scales = 50.0

analytic_gradients
no_hessians

Figure 6.9: Sample wusage of scaling keywords in Dakota input
Dakota/examples/users/rosen_opt_scaled.in

specification

s€e
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Table 6.1: Guidelines for optimization method selection.

Method Desired Problem Applicable Methods
Classification Characteristics
Gradient-Based Local smooth; continuous variables; no constraints optpp-cg
dot_bfgs, dot_frcg, conmin_frcg

smooth; continuous variables;
bound constraints

smooth; continuous variables;
bound constraints,
linear and nonlinear constraints

npsol_sqp, nlpql_sqp, dot_-mmfd,
dot_slp, dot_sqp, conmin_mfd,
optpp-newton, optpp_q-newton,
optpp-fd_newton,
weighted sums (multiobjective),
pareto_set strategy (multiobjective)

Gradient-Based Global

smooth; continuous variables;
bound constraints,
linear and nonlinear constraints

hybrid_strategy,
multi_start strategy

Derivative-Free Local

nonsmooth; continuous variables; bound constraints

optpp_pds

nonsmooth; continuous variables;
bound constraints,
linear and nonlinear constraints

asynch_pattern_search,
coliny_cobyla, coliny_pattern_search,
coliny_solis_wets,
surrogate_based_local

Gradient-Based Global

nonsmooth; continuous variables; bound constraints

ncsu_direct

nosmooth; continuous variables;
bound constraints,
linear and nonlinear constraints

coliny _direct, efficient_global,
surrogate_based_global

nonsmooth; continuous variables,
discrete variables; bound constraints,
linear and nonlinear constraints

coliny_ea, soga,
moga (multiobjective)
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make gradient-based optimization methods the methods of choice when the problem is smooth, unimodal, and
well-behaved. However, when the problem exhibits nonsmooth, discontinuous, or multimodal behavior, these
methods can also be the least robust since inaccurate gradients will lead to bad search directions, failed line
searches, and early termination, and the presence of multiple minima will be missed.

Thus, for gradient-based optimization, a critical factor is the gradient accuracy. Analytic gradients are ideal, but
are often unavailable. For many engineering applications, a finite difference method will be used by the optimiza-
tion algorithm to estimate gradient values. Dakota allows the user to select the step size for these calculations,
as well as choose between forward-difference and central-difference algorithms. The finite difference step size
should be selected as small as possible, to allow for local accuracy and convergence, but not so small that the
steps are “in the noise.” This requires an assessment of the local smoothness of the response functions using, for
example, a parameter study method. Central differencing, in general, will produce more reliable gradients than
forward differencing, but at roughly twice the expense.

Non-gradient-based Methods

Nongradient-based methods exhibit much slower convergence rates for finding an optimum, and as a result, tend
to be much more computationally demanding than gradient-based methods. Nongradient local optimization meth-
ods, such as pattern search algorithms, often require from several hundred to a thousand or more function eval-
uations, depending on the number of variables, and nongradient global optimization methods such as genetic
algorithms may require from thousands to tens-of-thousands of function evaluations. Clearly, for nongradient
optimization studies, the computational cost of the function evaluation must be relatively small in order to obtain
an optimal solution in a reasonable amount of time. In addition, nonlinear constraint support in nongradient meth-
ods is an open area of research and, while supported by many nongradient methods in Dakota, is not as refined
as constraint support in gradient-based methods. However, nongradient methods can be more robust and more
inherently parallel than gradient-based approaches. They can be applied in situations were gradient calculations
are too expensive or unreliable. In addition, some nongradient-based methods can be used for global optimization
which gradient-based techniques, by themselves, cannot. For these reasons, nongradient-based methods deserve
consideration when the problem may be nonsmooth, multimodal, or poorly behaved.

Surrogate-based Methods

Approaches that seek to improve the effectiveness or efficiency of optimizers and least squares methods through
the use of surrogate models include the surrogate-based local, surrogate-based global, and efficient global meth-
ods. Chapter 8 provides further information on these approaches. The surrogate-based local approach (see Sec-
tion 8.2) brings the efficiency of gradient-based optimization/least squares methods to nonsmooth or poorly be-
haved problems by smoothing noisy or discontinuous response results with a data fit surrogate model (e.g., a
quadratic polynomial) and then minimizing on the smooth surrogate using efficient gradient-based techniques.
The surrogate-based global approach (see Section 8.3) similarly employs optimizers/least squares methods with
surrogate models, but rather than localizing through the use of trust regions, seeks global solutions using global
methods. And the efficient global approach (see Section 8.4) uses the specific combination of Gaussian process
surrogate models in combination with the DIRECT global optimizer. Similar to these surrogate-based approaches,
the hybrid and multistart optimization strategies seek to bring the efficiency of gradient-based optimization meth-
ods to global optimization problems. In the former case, a global optimization method can be used for a few
cycles to locate promising regions and then local gradient-based optimization is used to efficiently converge on
one or more optima. In the latter case, a stratification technique is used to disperse a series of local gradient-based
optimization runs through parameter space. Without surrogate data smoothing, however, these strategies are best
for smooth multimodal problems. Section 15.2 and Section 15.3 provide more information on these approaches.
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6.5 Optimization Third Party Libraries

As mentioned in 6, Dakota serves as a delivery vehicle for a number third-party optimization libraries. The
packages are listed here along with the license status and web page where available.

e CONMIN (conmin_ methods) License: Public Domain (NASA).

e DOT (dot._ methods) License: commercial; website: Vanderplaats Research and Development, http:
//www.vrand.com. Not included in the open source version of Dakota. Sandia National Laboratories
and Los Alamos National Laboratory have limited seats for DOT. Other users may obtain their own copy
of DOT and compile it with the Dakota source code.

e HOPSPACK (asynch_pattern_search)License: LGPL; web page: https://software.sandia.
gov/trac/hopspack.

e JEGA (soga, moga) License: LGPL
e NCSUOpt (ncsu-direct) License: MIT

e NLPQL (nlpgl_ methods) License: commercial; website: Prof. Klaus Schittkowski, http://www.
uni-bayreuth.de/departments/math/~kschittkowski/nlpglp20.htm). Not included
in the open source version of Dakota. Users may obtain their own copy of NLPQLP and compile it with the
Dakota source code.

e NPSOL (npsol_ methods) License: commercial; website: Stanford Business Software http://www.
sbsi-sol-optimize.com. Not included in the open source version of Dakota. Sandia National
Laboratories, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory all have
site licenses for NPSOL. Other users may obtain their own copy of NPSOL and compile it with the Dakota
source code.

e OPT++ (optpp- methods) License: LGPL; website: http://csmr.ca.sandia.gov/opt++.

e SCOLIB (coliny_ methods) License: BSD; website: https://software.sandia.gov/trac/
acro/wiki/Packages
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Chapter 7

Nonlinear Least Squares Capabilities

7.1 Overview

Any Dakota optimization algorithm can be applied to calibration problems arising in parameter estimation, sys-
tem identification, and test/analysis reconciliation. However, nonlinear least-squares methods are optimization
algorithms that exploit the special structure of a sum of the squares objective function [46].

To exploit the problem structure, more granularity is needed in the response data than is required for a typical
optimization problem. That is, rather than using the sum-of-squares objective function and its gradient, least-
squares iterators require each term used in the sum-of-squares formulation along with its gradient. This means
that the m functions in the Dakota response data set consist of the individual least-squares terms along with any
nonlinear inequality and equality constraints. These individual terms are often called residuals when they denote
differences of observed quantities from values computed by the model whose parameters are being estimated.

The enhanced granularity needed for nonlinear least-squares algorithms allows for simplified computation of
an approximate Hessian matrix. In Gauss-Newton-based methods for example, the true Hessian matrix is ap-
proximated by neglecting terms in which residuals multiply Hessians (matrices of second partial derivatives) of
residuals, under the assumption that the residuals tend towards zero at the solution. As a result, residual function
value and gradient information (first-order information) is sufficient to define the value, gradient, and approxi-
mate Hessian of the sum-of-squares objective function (second-order information). See Section 7.2 for additional
details on this approximation.

In practice, least-squares solvers will tend to be significantly more efficient than general-purpose optimization
algorithms when the Hessian approximation is a good one, e.g., when the residuals tend towards zero at the
solution. Specifically, they can exhibit the quadratic convergence rates of full Newton methods, even though only
first-order information is used. Gauss-Newton-based least-squares solvers may experience difficulty when the
residuals at the solution are significant. Dakota has three solvers customized to take advantage of the sum of
squared residuals structure in this problem formulation. Least squares solvers may experience difficulty when the
residuals at the solution are significant, although experience has shown that Dakota’s NL2SOL method can handle
some problems that are highly nonlinear and have nonzero residuals at the solution.
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7.2 Nonlinear Least Squares Fomulations

Specialized least squares solution algorithms can exploit the structure of a sum of the squares objective function
for problems of the form:

minimize: flx) = Z [T3(x)]?

x € R"
subject to: gr <gx) <gu
h(x) = h, (7.1)
ar <Ax<ay
A.x = a

Xp <x <Xy

where f(x) is the objective function to be minimized and T} (x) is the i*" least squares term. The bound, linear,
and nonlinear constraints are the same as described previously for (6.1). Specialized least squares algorithms are
generally based on the Gauss-Newton approximation. When differentiating f(x) twice, terms of T;(x)T’(x) and
[T!(x)]? result. By assuming that the former term tends toward zero near the solution since T;(x) tends toward
zero, then the Hessian matrix of second derivatives of f(x) can be approximated using only first derivatives of
T;(x). As a result, Gauss-Newton algorithms exhibit quadratic convergence rates near the solution for those
cases when the Hessian approximation is accurate, i.e. the residuals tend towards zero at the solution. Thus, by
exploiting the structure of the problem, the second order convergence characteristics of a full Newton algorithm
can be obtained using only first order information from the least squares terms.

A common example for T;(x) might be the difference between experimental data and model predictions for a
response quantity at a particular location and/or time step, i.e.:

Ti(x) = Ri(x) — R; (7.2)

where R;(x) is the response quantity predicted by the model and R; is the corresponding experimental data. In
this case, x would have the meaning of model parameters which are not precisely known and are being calibrated
to match available data. This class of problem is known by the terms parameter estimation, system identification,
model calibration, test/analysis reconciliation, etc.

7.3 Nonlinear Least Squares with Dakota

In order to specify a least-squares problem, the responses section of the Dakota input should be configured us-
ing calibration_terms (as opposed to num_objective_functions in the case of optimization). The
calibration terms refer to the residuals (e.g. typically the differences between the simulation model and the
data). Note that Dakota expects the residuals and not the square of the residuals. Any linear or nonlinear
constraints are handled in an identical way to that of optimization (see Section 6.1; note that neither Gauss-
Newton nor NLSSOL require any constraint augmentation and NL2SOL supports neither linear nor nonlinear
constraints). Gradients of the least-squares terms and nonlinear constraints are required and should be spec-
ified using either numerical gradients, analytic_gradients, or mixed gradients. Since ex-
plicit second derivatives are not used by the least-squares methods, the no_hessians specification should be
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used. Dakota’s scaling options, described in Section 6.3.2 can be used on least-squares problems, using the
calibration_term_scales keyword to scale least-squares residuals, if desired.

7.4 Solution Techniques

Nonlinear least-squares problems can be solved using the Gauss-Newton algorithm, which leverages the full
Newton method from OPT++, the NLSSOL algorithm, which is closely related to NPSOL, or the NL2SOL
algorithm, which uses a secant-based algorithm. Details for each are provided below.

7.4.1 Gauss-Newton

Dakota’s Gauss-Newton algorithm consists of combining an implementation of the Gauss-Newton Hessian ap-
proximation (see Section 7.2) with full Newton optimization algorithms from the OPT++ package [87] (see Sec-
tion 6.2.1.1). The exact objective function value, exact objective function gradient, and the approximate objective
function Hessian are defined from the least squares term values and gradients and are passed to the full-Newton
optimizer from the OPT++ software package. As for all of the Newton-based optimization algorithms in OPT++,
unconstrained, bound-constrained, and generally-constrained problems are supported. However, for the generally-
constrained case, a derivative order mismatch exists in that the nonlinear interior point full Newton algorithm will
require second-order information for the nonlinear constraints whereas the Gauss-Newton approximation only
requires first order information for the least squares terms. License: LGPL.

This approach can be selected using the optpp_g_newton method specification. An example specification
follows:

method,
optpp_g_newton
max_iterations = 50
convergence_tolerance = le—-4

output debug

Refer to the Dakota Reference Manual [3] for more detail on the input commands for the Gauss-Newton algorithm.

The Gauss-Newton algorithm is gradient-based and is best suited for efficient navigation to a local least-squares
solution in the vicinity of the initial point. Global optima in multimodal design spaces may be missed. Gauss-
Newton supports bound, linear, and nonlinear constraints. For the nonlinearly-constrained case, constraint Hes-
sians (required for full-Newton nonlinear interior point optimization algorithms) are approximated using quasi-
Newton secant updates. Thus, both the objective and constraint Hessians are approximated using first-order
information.

7.4.2 NLSSOL

The NLSSOL algorithm is bundled with NPSOL. It uses an SQP-based approach to solve generally-constrained
nonlinear least-squares problems. It periodically employs the Gauss-Newton Hessian approximation to accelerate
the search. Like the Gauss-Newton algorithm of Section 7.4.1, its derivative order is balanced in that it requires
only first-order information for the least-squares terms and nonlinear constraints. License: commercial; see
NPSOL 6.2.1.1.

This approach can be selected using the n1ssol_sgp method specification. An example specification follows:
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method,
nlssol_sgp
convergence_tolerance = le-8

Refer to the Dakota Reference Manual [3] for more detail on the input commands for NLSSOL.

7.4.3 NL2SOL

The NL2SOL algorithm [ 18] is a secant-based least-squares algorithm that is g-superlinearly convergent. It adap-
tively chooses between the Gauss-Newton Hessian approximation and this approximation augmented by a correc-
tion term from a secant update. NL2SOL tends to be more robust (than conventional Gauss-Newton approaches)
for nonlinear functions and “large residual” problems, i.e., least-squares problems for which the residuals do not
tend towards zero at the solution. License: publicly available.

7.4.4 Additional Features and Future plans

Dakota can calculate confidence intervals on estimated parameters. These are determined for individual param-
eters; they are not joint confidence intervals. The intervals reported are 95% intervals around the estimated
parameters, and are calculated as the optimal value of the estimated parameters +/— a t-test statistic times the
standard error (SE) of the estimated parameter vector. The SE is based on a linearization approximation involving
the matrix of the derivatives of the model with respect to the derivatives of the estimated parameters. In the case
where these gradients are extremely inaccurate or the model is very nonlinear, the confidence intervals reported
are likely to be inaccurate as well. Future work on generating confidence intervals on the estimated parameters for
nonlinear least-squares methods will involve adding Bonferroni confidence intervals and one or two methods for
calculating joint confidence intervals (such as a linear approximation and the F-test method). See [103] and [124]
for more details about confidence intervals. Note that confidence intervals are not calculated when scaling is used,
when the number of least-squares terms is less than the number of parameters to be estimated, or when using
numerical gradients.

Dakota also allows a form of weighted least squares. The user can specify a set of weights that are used to
weight each residual term using the keyword calibration_weights. Note that these weights must be pre-
determined by the user and entered in the Dakota input file: they are not calculated on-the-fly. The user can also
specify scaling for the least-squares terms. Scaling is applied before weighting; usually one or the other would be
applied but not both. The Responses section in the Dakota Reference Manual [3] has more detail about weighting
and scaling of the residual terms.

The least-squares branch in Dakota is an area of continuing enhancements, particularly through the addition of new
least-squares algorithms. One potential future addition is the orthogonal distance regression (ODR) algorithms
which estimate values for both independent and dependent parameters.

7.5 Examples

Both the Rosenbrock and textbook example problems can be formulated as nonlinear least-squares problems.
Refer to Chapter 21 for more information on these formulations.

Figure 7.1 shows an excerpt from the output obtained when running NL2SOL on a five-dimensional problem.
Note that the optimal parameter estimates are printed, followed by the residual norm and values of the individual
residual terms, followed by the confidence intervals on the parameters.
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<<<<< Iterator nl2sol completed.
<<<<< Function evaluation summary: 27 total (26 new, 1 duplicate)
<<<<< Best parameters =
3.7541004764e-01 x1
1.9358463401e+00 x2
-1.4646865611e+00 x3
1.2867533504e-02 x4
2.2122702030e-02 x5
<<<<< Best residual norm = 7.3924926090e-03; 0.5 * norm™2 = 2.7324473487e-05
<<<<< Best residual terms =
-2.5698266189e-03
4.4759880011e-03
9.9223430643e-04
-1.0634409194e-03

Confidence Interval for x1 is
Confidence Interval for x2 is
Confidence Interval for x3 is
Confidence Interval for x4 is
Confidence Interval for x5 is

3.7116510206e-01, 3.7965499323e-01
1.4845485507e+00, .3871441295e+00
.9189348458e+00, -1.0104382765e+00
1.1948590669e-02, .3786476338e-02
2.0289951664e-02, 2.3955452397e-02

N

|
=
-

Figure 7.1: Example of confidence intervals on optimal parameters

The analysis driver script (the script being driven by Dakota) has to perform several tasks in the case of pa-
rameter estimation using nonlinear least-squares methods. The analysis driver script must: (1) read in the val-
ues of the parameters supplied by Dakota; (2) run the computer simulation with these parameter values; (3)
retrieve the results from the computer simulation; (4) compute the difference between each computed simula-
tion value and the corresponding experimental or measured value; and (5) write these residuals (differences) to
an external file that gets passed back to Dakota. Note there will be one line per residual term, specified with
num_least_squares_terms in the Dakota input file. It is the last two steps which are different from most
other Dakota applications.

To simplify specifying a least squares problem, a user may specify a data file containing experimental results
or other calibration data. This file may be specified with calibration_data_file. In this case, Dakota
will calculate the residuals (that is, the simulation model results minus the experimental results), and the user-
provided script can omit this step: the script can just return the simulation outputs of interest. An example
of this can be found in the file named Dakota/examples/users/textbook.nls_datafile.in. In
this example, there are 3 residual terms. The data file of experimental results associated with this example is
textbook.nls datafile.lsqg.dat. These three values are subtracted from the least-squares terms to
produce residuals for the nonlinear least-squares problem. Note that the file may be annotated (specified by
annotated) or freeform (specified by free form). The number of experiments in the calibration data file may
be specified with num_experiments, with one row of data per experiment. Finally, this data file may contain
additional information than just the observed experimental responses. If the observed data has measurement error
associated with it, this can be specified in columns of such error data after the response data. The number of
calibration terms which have associated error in the data set is given by num_std_deviations. Additionally,
there is sometimes the need to specify configuration variables. These are often used in Bayesian calibration anal-
ysis. These are specified as num_config_variables. If the user specifies a positive number of configuration
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variables, it is expected that they will occur in the text file before the responses.

7.6 Usage Guidelines

Calibration problems can be transformed to general optimization problems where the objective is some type of
aggregated error metric. For example, the objective could be the sum of squared error terms. However, it also
could be the mean of the absolute value of the error terms, the maximum difference between the simulation
results and observational results, etc. In all of these cases, one can pose the calibration problem as an optimization
problem that can be solved by any of Dakota’s optimizers. In this situation, when applying an general optimization
solver to a calibration problem, the guidelines in Table 6.4 still apply.

In some cases, it will be better to use a nonlinear least-squares method instead of a general optimizer to determine
optimal parameter values which result in simulation responses that “best fit” the observational data. Nonlinear
least squares methods exploit the special structure of a sum of the squares objective function. They can be much
more efficient than general optimizers. However, these methods require the gradients of the function with respect
to the parameters being calibrated. If the model is not able to produce gradients, one can use finite differencing
to obtain gradients. However, the gradients must be reasonably accurate for the method to proceed. Note that
the nonlinear least-squares methods only operate on a sum of squared errors as the objective. Also, the user must
return each residual term separately to Dakota, whereas the user can return an aggregated error measure in the
case of general optimizers.

The three nonlinear least-squares methods are the Gauss-Newton method in OPT++, NLSSOL, and NL2SOL.
Any of these may be tried; they give similar performance on many problems. NL2SOL tends to be more robust
than Gauss-Newton, especially for nonlinear functions and large-residual problems where one is not able to drive
the residuals to zero at the solution. NLSSOL does require that the user has the NPSOL library. Note that all of
these methods are local in the sense that they are gradient-based and depend on an initial starting point. Often they
are used in conjunction with a multi-start strategy, to perform several repetitions of the optimization at different
starting points in the parameter space. Another approach is to use a general global optimizer such as a genetic
algorithm or DIRECT as mentioned above. This can be much more expensive, however, in terms of the number
of function evaluations required.
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Chapter 8

Surrogate-Based Minimization

8.1 Overview

Surrogate models approximate an original, high fidelity “truth” model, typically at reduced computational cost. In
Dakota, several surrogate model selections are possible, which are categorized as data fits, multifidelity models,
and reduced-order models, as described in Section 9.4. In the context of minimization (optimization or calibra-
tion), surrogate models can speed convergence by reducing function evaluation cost or smoothing noisy response
functions. Three categories of surrogate-based minimization are discussed in this chapter:

e Trust region-managed surrogate-based local minimization, with data fit surrogate, multifidelity models, or
reduced-order models.

e Surrogate-based global minimization, where a single surrogate is built (and optionally iteratively updated)
over the whole design space.

o Efficient global minimization: nongradient-based constrained and unconstrained optimization and nonlinear
least squares based on Gaussian process models, guided by an expected improvement function.

8.2 Surrogate-Based Local Minimization

In the surrogate-based local minimization method (keyword: surrogate_based-local) the minimization
algorithm operates on a surrogate model instead of directly operating on the computationally expensive simulation
model. The surrogate model can be based on data fits, multifidelity models, or reduced-order models, as described
in Section 9.4. Since the surrogate will generally have a limited range of accuracy, the surrogate-based local
algorithm periodically checks the accuracy of the surrogate model against the original simulation model and
adaptively manages the extent of the approximate optimization cycles using a trust region approach.

Refer to the Dakota Theory Manual [4] for algorithmic details on iterate acceptance, merit function formulations,
convergence assessment, and constraint relaxation.
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8.2.1 SBO with Data Fits

When performing SBO with local, multipoint, and global data fit surrogates, it is necessary to regenerate or
update the data fit for each new trust region. In the global data fit case, this can mean performing a new design
of experiments on the original high-fidelity model for each trust region, which can effectively limit the approach
to use on problems with, at most, tens of variables. Figure 8.1 displays this case. However, an important benefit
of the global sampling is that the global data fits can tame poorly-behaved, nonsmooth, discontinuous response
variations within the original model into smooth, differentiable, easily navigated surrogates. This allows SBO
with global data fits to extract the relevant global design trends from noisy simulation data.

When enforcing local consistency between a global data fit surrogate and a
high-fidelity model at a point, care must be taken to balance this local con-
sistency requirement with the global accuracy of the surrogate. In particular,
performing a correction on an existing global data fit in order to enforce lo-
cal consistency can skew the data fit and destroy its global accuracy. One
approach for achieving this balance is to include the consistency requirement
within the data fit process by constraining the global data fit calculation (e.g.,
using constrained linear least squares). This allows the data fit to satisfy the
consistency requirement while still addressing global accuracy with its re-
maining degrees of freedom. Embedding the consistency within the data fit
also reduces the sampling requirements. For example, a quadratic polyno-
mial normally requires at least (n + 1)(n + 2)/2 samples for n variables
to perform the fit. However, with an embedded first-order consistency con-
straint at a single point, the minimum number of samples is reduced by n + 1
to (n? +n)/2.

Figure 8.1: SBO iteration pro-
gression for global data fits.

In the local and multipoint data fit cases, the iteration progression will ap-

pear as in Fig. 8.3. Both cases involve a single new evaluation of the original

high-fidelity model per trust region, with the distinction that multipoint approximations reuse information from
previous SBO iterates. Like model hierarchy surrogates, these techniques scale to larger numbers of design vari-
ables. Unlike model hierarchy surrogates, they generally do not require surrogate corrections, since the matching
conditions are embedded in the surrogate form (as discussed for the global Taylor series approach above). The
primary disadvantage to these surrogates is that the region of accuracy tends to be smaller than for global data
fits and multifidelity surrogates, requiring more SBO cycles with smaller trust regions. More information on the
design of experiments methods is available in Chapter 4, and the data fit surrogates are described in Section 9.4.3.

Figure 8.2 shows a Dakota input file that implements surrogate-based optimization on Rosenbrock’s function.
The first method keyword block contains the SBO keyword surrogate_based_local, plus the commands
for specifying the trust region size and scaling factors. The optimization portion of SBO, using the CONMIN
Fletcher-Reeves conjugate gradient method, is specified in the following keyword blocks for method, model,
variables, and responses. The model used by the optimization method specifies that a global surrogate will
be used to map variables into responses (no interface specification is used by the surrogate model). The global
surrogate is constructed using a DACE method which is identified with the *SAMPLING’ identifier. This data
sampling portion of SBO is specified in the final set of keyword blocks for method, model, interface, and
responses (the earlier variables specification is reused). This example problem uses the Latin hypercube
sampling method in the LHS software to select 10 design points in each trust region. A single surrogate model
is constructed for the objective function using a quadratic polynomial. The initial trust region is centered at the
design point (z1, z2) = (—1.2,1.0), and extends +0.4 (10% of the global bounds) from this point in the x; and
o coordinate directions.

If this input file is executed in Dakota, it will converge to the optimal design point at (x1,22) = (1,1) in ap-
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# Dakota Input File: rosen_opt_sbo.in
strategy
single_method
tabular_graphics_data

tabular_graphics_file = ’rosen_opt_sbo.dat’
method_pointer = /SBLO’

method

id_method = ’SBLO’
surrogate_based_local
model_pointer = ’SURROGATE’
approx_method_pointer = /NLP’
max_iterations = 500
trust_region

initial_size = 0.10
minimum_size = 1.0e-6
contract_threshold = 0.25
expand_threshold =0.75
contraction_factor = 0.50
expansion_factor = 1.50
method
id_method = ’'NLP’
conmin_frcg
max_iterations = 50
convergence_tolerance = le-8
model
id_model = ’SURROGATE’
surrogate global
responses_pointer = 'SURROGATE_RESP’
dace_method_pointer = ’SAMPLING’

correction additive zeroth_order
polynomial quadratic

variables

continuous_design = 2
initial_point -1.2 1.0
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors rx1 x2’

responses

id_responses = ’'SURROGATE_RESP’

objective_functions = 1
numerical_gradients
method_source dakota
interval_type central
fd_gradient_step_size = l.e-6
no_hessians

method
id_method = ’SAMPLING’
model_pointer = ’TRUTH’
sampling

samples = 10
seed = 531 rng rnum2
sample_type lhs

model
id_model = ’TRUTH’
single
interface_pointer = ’TRUE_FN’
responses_pointer = ’'TRUE_RESP’

interface
direct
id_interface = ’TRUE_FN’
analysis_driver = rosenbrock’
deactivate evaluation_cache restart_file

responses
id_responses = ’'TRUE_RESP’
objective_functions = 1

no_gradients
no_hessians

Figure 8.2: Dakota input file for the surrogate-based local optimization example - see
Dakota/examples/users/rosen_opt_sbo.in
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proximately 800 function evaluations. While this solution is correct, it is obtained at a much higher cost than a
traditional gradient-based optimizer (e.g., see the results obtained in Section 2.3.3). This demonstrates that the
SBO method with global data fits is not really intended for use with smooth continuous optimization problems;
direct gradient-based optimization can be more efficient for such applications. Rather, SBO with global data fits
is best-suited for the types of problems that occur in engineering design where the response quantities may be dis-
continuous, nonsmooth, or may have multiple local optima [50]. In these types of engineering design problems,
traditional gradient-based optimizers often are ineffective, whereas global data fits can extract the global trends of
interest despite the presence of local nonsmoothness (for an example problem with multiple local optima, look in
Dakota/test for the file dakota_sbo_sine_fcn.in [51]).

The surrogate-based local minimizer is only mathematically guaranteed to find a local minimum. However, in
practice, SBO can often find the global minimum. Due to the random sampling method used within the SBO
algorithm, the SBO method will solve a given problem a little differently each time it is run (unless the user
specifies a particular random number seed in the dakota input file as is shown in Figure 8.2). Our experience on
the quasi-sine function mentioned above is that if you run this problem 10 times with the same starting conditions
but different seeds, then you will find the global minimum in about 70-80% of the trials. This is good performance
for what is mathematically only a local optimization method.

8.2.2 SBO with Multifidelity Models

When performing SBO with model hierarchies, the low-fidelity model is normally fixed, requiring only a single
high-fidelity evaluation to compute a new correction for each new trust region. Figure 8.3 displays this case. This
renders the multifidelity SBO technique more scalable to larger numbers of design variables since the number
of high-fidelity evaluations per iteration (assuming no finite differencing for derivatives) is independent of the
scale of the design problem. However, the ability to smooth poorly-behaved response variations in the high-
fidelity model is lost, and the technique becomes dependent on having a well-behaved low-fidelity model'. In
addition, the parameterizations for the low and high-fidelity models may differ, requiring the use of a mapping
between these parameterizations. Space mapping, corrected space mapping, POD mapping, and hybrid POD
space mapping are being explored for this purpose [96, 97].

When applying corrections to the low-fidelity model, there is no concern for
balancing global accuracy with the local consistency requirements. However,
with only a single high-fidelity model evaluation at the center of each trust
region, it is critical to use the best correction possible on the low-fidelity
model in order to achieve rapid convergence rates to the optimum of the high-
fidelity model [27].

s

A multifidelity test problem named dakota_sbo_hierarchical.in
is available in Dakota/test to demonstrate this SBO approach. !
This test problem uses the Rosenbrock function as the high fidelity -
model and a function named “If_rosenbrock” as the low fidelity model. -

Here, If rosenbrock is a variant of the Rosenbrock function (see - U L AL
Dakota_Source/test/1f_rosenbrock.C for formulation) with the - ! : ! *
minimum point at (z1, z2) = (0.80, 0.44), whereas the minimum of the orig-

inal Rosenbrock function is (21, z2) = (1,1). Multifidelity SBO locates the Figure 8.3: SBO iteration pro-
high-fidelity minimum in 11 high fidelity evaluations for additive second- gression for model hierarchies.
order corrections and in 208 high fidelity evaluations for additive first-order

corrections, but fails for zeroth-order additive corrections by converging to

S et
Foheates
i -

't is also possible to use a hybrid data fit/multifidelity approach in which a smooth data fit of a noisy low fidelity model is used in
combination with a high fidelity model
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the low-fidelity minimum.

8.2.3 SBO with Reduced Order Models

When performing SBO with reduced-order models (ROMs), the ROM is mathematically generated from the high-
fidelity model. A critical issue in this ROM generation is the ability to capture the effect of parametric changes
within the ROM. Two approaches to parametric ROM are extended ROM (E-ROM) and spanning ROM (S-ROM)
techniques [128]. Closely related techniques include tensor singular value decomposition (SVD) methods [79]. In
the single-point and multipoint E-ROM cases, the SBO iteration can appear as in Fig. 8.3, whereas in the S-ROM,
global E-ROM, and tensor SVD cases, the SBO iteration will appear as in Fig. 8.1. In addition to the high-fidelity
model analysis requirements, procedures for updating the system matrices and basis vectors are also required.

Relative to data fits and multifidelity models, ROMs have some attractive advantages. Compared to data fits such
as regression-based polynomial models, they are more physics-based and would be expected to be more predictive
(e.g., in extrapolating away from the immediate data). Compared to multifidelity models, ROMS may be more
practical in that they do not require multiple computational models or meshes which are not always available. The
primary disadvantage is potential invasiveness to the simulation code for projecting the system using the reduced
basis.

8.3 Surrogate-Based Global Minimization

Surrogate-based global minimization differs from the surrogate-based local minimization approach discussed in
the previous section in several ways: it is not a trust-region approach; initially there is one global surrogate
constructed over a set of sample points and the optimizer operates on that surrogate (as opposed to adaptively
selecting points and re-building a surrogate in each trust region); and there is no guarantee of convergence.

The surrogate based_global method was developed to address two needs. The first is the case where a
user wishes to use existing function evaluations or a fixed sample size (perhaps based on computational cost and
allocation of resources) to build a surrogate once and optimize on it. In this case (a single global optimization on
a surrogate model), the set of surrogate building points is determined in advance as opposed to the trust-region
local surrogate optimization in which the number of “true” function evaluations depends on the location and size
of the trust region, the goodness of the surrogate within the trust-region, and problem characteristics.

In the second surrogate_based_global use case, we want to update the surrogate, but globally. That is, we
add points to the sample set used to create the surrogate, rebuild the surrogate, and then perform another global
optimization on the new surrogate. Thus, surrogate-based global optimization can be used in an iterative scheme.
In one iteration, minimizers of the surrogate model are found, and a selected subset of these are passed to the
next iteration. In the next iteration, these surrogate points are evaluated with the “truth” model, and then added
to the set of points upon which the next surrogate is constructed. This presents a more accurate surrogate to the
minimizer at each subsequent iteration, presumably driving to optimality quickly. Note that a global surrogate is
constructed using the same bounds in each iteration. This approach has no guarantee of convergence.

The surrogate-based global method was originally designed for MOGA (a multi-objective genetic algorithm).
Since genetic algorithms often need thousands or tens of thousands of points to produce optimal or near-optimal
solutions, surrogates can help by reducing the necessary truth model evaluations. Instead of creating one set of
surrogates for the individual objectives and running the optimization algorithm on the surrogate once, the idea is
to select points along the (surrogate) Pareto frontier, which can be used to supplement the existing points. In this
way, one does not need to use many points initially to get a very accurate surrogate. The surrogate becomes more
accurate as the iterations progress.
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Most single objective optimization methods will return only a single optimal point. In that case, only one point
from the surrogate model will be evaluated with the “true” function and added to the pointset upon which the
surrogate is based. In this case, it will take many iterations of the surrogate-based global optimization for the
approach to converge, and its utility may not be as great as for the multi-objective case when multiple optimal
solutions are passed from one iteration to the next to supplement the surrogate. Note that the user has the option of
appending the optimal points from the surrogate model to the current set of truth points or using the optimal points
from the surrogate model to replace the optimal set of points from the previous iteration. Although appending to
the set is the default behavior, at this time we strongly recommend using the option replace_points because
it appears to be more accurate and robust.

When using the surrogate-based global method, we first recommend running one optimization on a single sur-
rogate model. That is, set max_iterations to 1. This will allow one to get a sense of where the optima are
located and also what surrogate types are the most accurate to use for the problem. Note that by fixing the seed of
the sample on which the surrogate is built, one can take a Dakota input file, change the surrogate type, and re-run
the problem without any additional function evaluations by specifying the use of the dakota restart file which will
pick up the existing function evaluations, create the new surrogate type, and run the optimization on that new
surrogate. Also note that one can specify that surrogates be built for all primary functions and constraints or for
only a subset of these functions and constraints. This allows one to use a ”truth” model directly for some of the
response functions, perhaps due to them being much less expensive than other functions. Finally, a diagnostic
threshold can be used to stop the method if the surrogate is so poor that it is unlikely to provide useful points. If
the goodness-of-fit has an R-squared value less than 0.5, meaning that less than half the variance of the output can
be explained or accounted for by the surrogate model, the surrogate-based global optimization stops and outputs
an error message. This is an arbitrary threshold, but generally one would want to have an R-squared value as close
to 1.0 as possible, and an R-squared value below 0.5 indicates a very poor fit.

For the surrogate-based global method, we initially recommend a small number of maximum iterations, such as
3-5, to get a sense of how the optimization is evolving as the surrogate gets updated globally. If it appears to be
changing significantly, then a larger number (used in combination with restart) may be needed.

Figure 8.4 shows a Dakota input file that implements surrogate-based global optimization on a multi-objective
test function. The first method keyword block contains the keyword surrogate_based_global, plus the
commands for specifying five as the maximum iterations and the option to replace points in the global surrogate
construction. The method block identified as MOGA specifies a multi-objective genetic algorithm optimizer and
its controls. The model keyword block specifies a surrogate model. In this case, a gaussian_process model
is used as a surrogate. The dace method_pointer specifies that the surrogate will be build on 100 Latin
Hypercube samples with a seed = 531. The remainder of the input specification deals with the interface to the
actual analysis driver and the 2 responses being returned as objective functions from that driver.

8.4 Efficient Global Minimization

Efficient Global Optimization (EGO) is a global optimization technique that employs response surface surro-
gates [73, 70]. In each EGO iteration, a Gaussian process (GP) approximation for the objective function is
constructed based on sample points of the true simulation. The GP allows one to specify the prediction at a new
input location as well as the uncertainty associated with that prediction. The key idea in EGO is to maximize an
Expected Improvement Function (EIF), defined as the expectation that any point in the search space will provide
a better solution than the current best solution, based on the expected values and variances predicted by the GP
model. It is important to understand how the use of this EIF leads to optimal solutions. The EIF indicates how
much the objective function value at a new potential location is expected to be less than the predicted value at
the current best solution. Because the GP model provides a Gaussian distribution at each predicted point, ex-
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# Dakota Input File: mogatestl_opt_sbo.in
strategy

single_method

tabular_graphics_data

method_pointer = ’SBGO’

method
id_method = ’SBGO’
surrogate_based_global
model_pointer = ’ SURROGATE’
approx_method_pointer = ’MOGA’
max_iterations = 5
replace_points
#output verbose

method

id_method = ’'MOGA’

moga

output silent
seed = 10983

population_size = 300

max_function_evaluations = 5000

initialization_type unique_random

crossover_type shuffle_random
num_offspring = 2 num_parents = 2
crossover_rate = 0.8

mutation_type replace_uniform
mutation_rate = 0.1

fitness_type domination_count

replacement_type below_limit = 6
shrinkage_percentage = 0.9

niching_type distance 0.05 0.05

postprocessor_type
orthogonal_distance 0.05 0.05

convergence_type metric_tracker
percent_change = 0.05 num_generations

model
id_model = '’ SURROGATE’
surrogate global
dace_method_pointer = ’SAMPLING’
correction additive zeroth_order
gaussian_process dakota

method
id_method = ’SAMPLING’
model_pointer = ’TRUTH’
sampling
samples = 100 seed = 531

sample_type lhs

model
id_model = ’TRUTH’
single
variables
continuous_design = 3
initial_point 0 0 0
upper_bounds 4 4 4
lower_bounds -4 -4 -4
descriptors rx1l" 'x2" 'x3’
interface
fork
analysis_driver = ’'mogatestl’
responses
objective_functions = 2

no_gradients
no_hessians

tabular_graphics_file = ’"mogatestl_opt_sbo.dat’

10

Figure 8.4: MOGA example — see Dakota/examples/users/mogatestl_opt_sbo.in
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# Dakota Input File: rosen_opt_ego.in
strategy
single_method
tabular_graphics_data
tabular_graphics_file = ’'rosen_opt_ego.dat’

method
efficient_global
seed = 123456

variables
continuous_design = 2
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors rx1’ rx2!
interface
fork
analysis_driver = ’rosenbrock’
responses
objective_functions = 1

no_gradients
no_hessians

Figure 8.5: Dakota input file for the efficient global optimization example — see
Dakota/examples/users/rosen_opt_ego.in

pectations can be calculated. Points with good expected values and even a small variance will have a significant
expectation of producing a better solution (exploitation), but so will points that have relatively poor expected val-
ues and greater variance (exploration). The EIF incorporates both the idea of choosing points which minimize the
objective and choosing points about which there is large prediction uncertainty (e.g., there are few or no samples
in that area of the space, and thus the probability may be high that a sample value is potentially lower than other
values). Because the uncertainty is higher in regions of the design space with few observations, this provides a
balance between exploiting areas of the design space that predict good solutions, and exploring areas where more
information is needed.

There are two major differences between our implementation and that of [73]: we do not use a branch and bound
method to find points which maximize the EIF. Rather, we use the DIRECT algorithm. Second, we allow for
multiobjective optimization and nonlinear least squares including general nonlinear constraints. Constraints are
handled through an augmented Lagrangian merit function approach (see Surrogate-Based Minimization chapter
in Dakota Theory Manual [4]).

The method is specified as efficient_global. Currently we do not expose any specification controls for the
underlying Gaussian process model used or for the optimization of the expected improvement function, which is
currently performed by the NCSU DIRECT algorithm. The only item the user can specify is a seed which is used
in the Latin Hypercube Sampling to generate the initial set of points which is used to construct the initial Gaussian
process. An example specification for the EGO algorithm is shown in Figure 8.5.
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Chapter 9

Models

9.1 Overview

Chapters 3 through 7 presented the different “iterators” (or methods) available in Dakota. An iterator iterates on
a model in order to map a set of variables into a set of responses. This model may involve a simple mapping
involving a single interface, or it may involve recursions using sub-iterator and sub-models. These recursion
capabilities were developed in order to provide mechanisms for “nesting,” “layering,” and “recasting” of software
components, which allows the use of these components as building blocks to accomplish more sophisticated
studies, such as surrogate-based optimization or optimization under uncertainty. In a nested relationship, a sub-
iterator is executed using its sub-model for every evaluation of the nested model. In a layered relationship, on
the other hand, sub-iterators and sub-models are used only for periodic updates and verifications. And in a recast
relationship, the input variable and output response definitions in a sub-model are reformulated in order to support
new problem definitions. In each of these cases, the sub-model is of arbitrary type, such that model recursions
can be chained together in as long of a sequence as needed (e.g., layered containing nested contained layered
containing single in Section 16.2.2). Figure 9.1 displays the model class hierarchy from the Dakota Developers
Manual [2], with derived classes for single models, nested models, recast models, and two types of surrogate
models: data fit and hierarchical/multifidelity. A third type of derived surrogate model supporting reduced-order
models (ROM) is planned for future releases.

Section 9.2 describes single models; Section 9.3 describes recast models; Section 9.4 describes surrogate models
of the data fit, multifidelity, and ROM type; and Section 9.5 describes nested models. Finally, Chapter 16 presents
a number of advanced examples demonstrating these model recursions.

Mestedrkdodel RecastModel Singletodel Surrogaterodel

DataFitsurrhodel Hierarchsurikiodel

Figure 9.1: The Dakota model class hierarchy.
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9.2 Single Models

The single model is the simplest model type. It uses a single interface instance (see Chapter 11) to map variables
(see Chapter 10) into responses (see Chapter 12). There is no recursion in this case. Refer to the Models chapter
in the Dakota Reference Manual [3] for additional information on the single model specification.

9.3 Recast Models

The recast model is not directly visible to the user within the input specification. Rather, it is used “behind the
scenes” to recast the inputs and outputs of a sub-model for the purposes of reformulating the problem posed to an
iterator. Examples include variable and response scaling (see Section 6.3.2), transformations of uncertain variables
and associated response derivatives to employ standardized random variables (see Sections 5.3 and 5.4), multiob-
jective optimization (see Section 6.3.1), merit functions (see Section 8.2), and expected improvement/feasibility
(see Sections 8.4 and 5.3.2). Refer to the Dakota Developers Manual [2] for additional details on the mechanics
of recasting problem formulations.

9.4 Surrogate Models

Surrogate models are inexpensive approximate models that are intended to capture the salient features of an
expensive high-fidelity model. They can be used to explore the variations in response quantities over regions
of the parameter space, or they can serve as inexpensive stand-ins for optimization or uncertainty quantification
studies (see, for example, the surrogate-based optimization strategy in Section 8). Surrogate models supported
in Dakota can be categorized into three types: data fits, multifidelity, and reduced-order model surrogates. An
overview and discussion of surrogate correction is provided here, with details following.

9.4.1 Overview of Surrogate Types

Data fitting methods involve construction of an approximation or surrogate model using data (response values,
gradients, and Hessians) generated from the original truth model. Data fit methods can be further categorized
as local, multipoint, and global approximation techniques, based on the number of points used in generating the
data fit. Local methods involve response data from a single point in parameter space. Available local techniques
currently include:

Taylor Series Expansion: This is a local first-order or second-order expansion centered at a single point in the
parameter space.

Multipoint approximations involve response data from two or more points in parameter space, often involving the
current and previous iterates of a minimization algorithm. Available techniques currently include:

TANA-3: This multipoint approximation uses a two-point exponential approximation [132, 35] built with re-
sponse value and gradient information from the current and previous iterates.

Global methods, often referred to as response surface methods, involve many points spread over the parameter
ranges of interest. These surface fitting methods work in conjunction with the sampling methods and design of
experiments methods described in Sections 5.2 and 4.2.

Polynomial Regression: First-order (linear), second-order (quadratic), and third-order (cubic) polynomial re-
sponse surfaces computed using linear least squares regression methods. Note: there is currently no use of
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forward- or backward-stepping regression methods to eliminate unnecessary terms from the polynomial model.

Gaussian Process (GP) or Kriging Interpolation Dakota contains two implementations of Gaussian process,
also known as Kriging [53], spatial interpolation. One of these resides in the Surfpack sub-package of Dakota,
the other resides in Dakota itself. Both versions use the Gaussian correlation function with parameters that are
selected by Maximum Likelihood Estimation (MLE). This correlation function results in a response surface that
is C"°°-continuous. Prior to Dakota 5.2, the Surfpack GP was referred to as the “Kriging” model and the Dakota
version was labeled as the “Gaussian Process.” These terms are now used interchangeably. As of Dakota 5.2,the
Surfpack GP is used by default. For now the user still has the option to select the Dakota GP, but the Dakota GP
is deprecated and will be removed in a future release.

e Surfpack GP: Ill-conditioning due to a poorly spaced sample design is handled by discarding points that
contribute the least unique information to the correlation matrix. Therefore, the points that are discarded
are the ones that are easiest to predict. The resulting surface will exactly interpolate the data values at the
retained points but is not guaranteed to interpolate the discarded points.

e Dakota GP: Ill-conditioning is handled by adding a jitter term or “nugget” to diagonal elements of the
correlation matrix. When this happens, the Dakota GP may not exactly interpolate the data values.

Artificial Neural Networks: An implementation of the stochastic layered perceptron neural network developed
by Prof. D. C. Zimmerman of the University of Houston [133]. This neural network method is intended to have a
lower training (fitting) cost than typical back-propagation neural networks.

Multivariate Adaptive Regression Splines (MARS): Software developed by Prof. J. H. Friedman of Stanford
University [39]. The MARS method creates a C?-continuous patchwork of splines in the parameter space.

Radial Basis Functions (RBF): Radial basis functions are functions whose value typically depends on the dis-
tance from a center point, called the centroid. The surrogate model approximation is constructed as the weighted
sum of individual radial basis functions.

Moving Least Squares (MLS): Moving Least Squares can be considered a more specialized version of linear
regression models. MLS is a weighted least squares approach where the weighting is “moved” or recalculated for
every new point where a prediction is desired. [91]

In addition to data fit surrogates, Dakota supports multifidelity and reduced-order model approximations:

Multifidelity Surrogates: Multifidelity modeling involves the use of a low-fidelity physics-based model as a
surrogate for the original high-fidelity model. The low-fidelity model typically involves a coarser mesh, looser
convergence tolerances, reduced element order, or omitted physics. It is a separate model in its own right and
does not require data from the high-fidelity model for construction. Rather, the primary need for high-fidelity
evaluations is for defining correction functions that are applied to the low-fidelity results.

Reduced Order Models: A reduced-order model (ROM) is mathematically derived from a high-fidelity model
using the technique of Galerkin projection. By computing a set of basis functions (e.g., eigenmodes, left singular
vectors) that capture the principal dynamics of a system, the original high-order system can be projected to a much
smaller system, of the size of the number of retained basis functions.

9.4.2 Correction Approaches

Each of the surrogate model types supports the use of correction factors that improve the local accuracy of the
surrogate models. The correction factors force the surrogate models to match the true function values and possibly
true function derivatives at the center point of each trust region. Currently, Dakota supports either zeroth-, first-, or
second-order accurate correction methods, each of which can be applied using either an additive, multiplicative, or
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combined correction function. For each of these correction approaches, the correction is applied to the surrogate
model and the corrected model is then interfaced with whatever algorithm is being employed. The default behavior
is that no correction factor is applied.

The simplest correction approaches are those that enforce consistency in function values between the surrogate
and original models at a single point in parameter space through use of a simple scalar offset or scaling applied
to the surrogate model. First-order corrections such as the first-order multiplicative correction (also known as
beta correction [12]) and the first-order additive correction [81] also enforce consistency in the gradients and
provide a much more substantial correction capability that is sufficient for ensuring provable convergence in SBO
algorithms (see Section 8.2). SBO convergence rates can be further accelerated through the use of second-order
corrections which also enforce consistency in the Hessians [27], where the second-order information may involve
analytic, finite-difference, or quasi-Newton Hessians.

Correcting surrogate models with additive corrections involves

Frin (X) = fro(x) + a(x) 9.1)

where multifidelity notation has been adopted for clarity. For multiplicative approaches, corrections take the form

Frig(X) = fio(x)B(x) (9.2)

where, for local corrections, a(x) and §(x) are first or second-order Taylor series approximations to the exact
correction functions:

a(x) = A(xe)+ VA(XC)T(X — Xc) + %(x — XC)TVQA(XC)(X - X¢) 9.3)
B(x) = B(xe)+ VB(xe)T(x — xe) + %(x — )TV B(xe) (% — Xe) ©.4)

where the exact correction functions are

Ax) = fri(x) = fio(x) 9.5)
fhi(x)
B(x) 7o) 9.6)

Refer to [27] for additional details on the derivations.

A combination of additive and multiplicative corrections can provide for additional flexibility in minimizing the
impact of the correction away from the trust region center. In other words, both additive and multiplicative
corrections can satisfy local consistency, but through the combination, global accuracy can be addressed as well.
This involves a convex combination of the additive and multiplicative corrections:

Friy (%) = Y frin (%) + (1 =) friy (%) ©.7)

where v is calculated to satisfy an additional matching condition, such as matching values at the previous design
iterate.

9.4.3 Data Fit Surrogate Models

A surrogate of the data fit type is a non-physics-based approximation typically involving interpolation or regres-
sion of a set of data generated from the original model. Data fit surrogates can be further characterized by the
number of data points used in the fit, where a local approximation (e.g., first or second-order Taylor series) uses
data from a single point, a multipoint approximation (e.g., two-point exponential approximations (TPEA) or two-
point adaptive nonlinearity approximations (TANA)) uses a small number of data points often drawn from the
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previous iterates of a particular algorithm, and a global approximation (e.g., polynomial response surfaces, krig-
ing/gaussian_process, neural networks, radial basis functions, splines) uses a set of data points distributed over the
domain of interest, often generated using a design of computer experiments.

Dakota contains several types of surface fitting methods that can be used with optimization and uncertainty quan-
tification methods and strategies such as surrogate-based optimization and optimization under uncertainty. These
are: polynomial models (linear, quadratic, and cubic), first-order Taylor series expansion, kriging spatial inter-
polation, artificial neural networks, multivariate adaptive regression splines, radial basis functions, and moving
least squares. With the exception of Taylor series methods, all of the above methods listed in the previous sen-
tence are accessed in Dakota through the Surfpack library. All of these surface fitting methods can be applied to
problems having an arbitrary number of design parameters. However, surface fitting methods usually are practical
only for problems where there are a small number of parameters (e.g., a maximum of somewhere in the range of
30-50 design parameters). The mathematical models created by surface fitting methods have a variety of names in
the engineering community. These include surrogate models, meta-models, approximation models, and response
surfaces. For this manual, the terms surface fit model and surrogate model are used.

The data fitting methods in Dakota include software developed by Sandia researchers and by various researchers
in the academic community.

9.4.3.1 Procedures for Surface Fitting

The surface fitting process consists of three steps: (1) selection of a set of design points, (2) evaluation of the true
response quantities (e.g., from a user-supplied simulation code) at these design points, and (3) using the response
data to solve for the unknown coefficients (e.g., polynomial coefficients, neural network weights, kriging correla-
tion factors) in the surface fit model. In cases where there is more than one response quantity (e.g., an objective
function plus one or more constraints), then a separate surface is built for each response quantity. Currently, the
surface fit models are built using only 0*"-order information (function values only), although extensions to using
higher-order information (gradients and Hessians) are possible. Each surface fitting method employs a different
numerical method for computing its internal coefficients. For example, the polynomial surface uses a least-squares
approach that employs a singular value decomposition to compute the polynomial coefficients, whereas the krig-
ing surface uses Maximum Likelihood Estimation to compute its correlation coefficients. More information on
the numerical methods used in the surface fitting codes is provided in the Dakota Developers Manual [2].

The set of design points that is used to construct a surface fit model is generated using either the DDACE software
package [ 19] or the LHS software package [71]. These packages provide a variety of sampling methods including
Monte Carlo (random) sampling, Latin hypercube sampling, orthogonal array sampling, central composite design
sampling, and Box-Behnken sampling. More information on these software packages is provided in Chapter 4.

9.4.3.2 Taylor Series

The Taylor series model is purely a local approximation method. That is, it provides local trends in the vicinity of
a single point in parameter space. The first-order Taylor series expansion is:

f(x) = f(x0) + Vi f(x0)" (x — o) 9.8)

and the second-order expansion is:

f(x) & f(x0) + Vf(x0)" (x — x0) + %(X —x0)"VZf(x0)(x — %) 9.9

where X is the expansion point in n-dimensional parameter space and f(xo), Vxf(Xo), and V2 f(xg) are the
computed response value, gradient, and Hessian at the expansion point, respectively. As dictated by the responses
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specification used in building the local surrogate, the gradient may be analytic or numerical and the Hessian may
be analytic, numerical, or based on quasi-Newton secant updates.

In general, the Taylor series model is accurate only in the region of parameter space that is close to xo . While the
accuracy is limited, the first-order Taylor series model reproduces the correct value and gradient at the point xg,
and the second-order Taylor series model reproduces the correct value, gradient, and Hessian. This consistency is
useful in provably-convergent surrogate-based optimization. The other surface fitting methods do not use gradient
information directly in their models, and these methods rely on an external correction procedure in order to satisfy
the consistency requirements of provably-convergent SBO.

9.4.3.3 Two Point Adaptive Nonlinearity Approximation

The TANA-3 method [132] is a multipoint approximation method based on the two point exponential approxima-
tion [35]. This approach involves a Taylor series approximation in intermediate variables where the powers used
for the intermediate variables are selected to match information at the current and previous expansion points. The
form of the TANA model is:

n

) d | .
o0 = 100) + 3 5 )" ) e DGt~ at? ©.10)

=1 i=

where n is the number of variables and:

ol (x1) x;

i = l+n|2% 1 “1] 9.11

g o %(Xz)]/n{xi,z ©-1D
H

D SN N EE S N E O 012
of st L

H = 2|f6a) = fxe) = Y 5o-(xe) == (s — al) (9.13)
i=1 " v

and x5 and x; are the current and previous expansion points. Prior to the availability of two expansion points, a
first-order Taylor series is used.

9.4.3.4 Linear, Quadratic, and Cubic Polynomial Models

Linear, quadratic, and cubic polynomial models are available in Dakota. The form of the linear polynomial model
is

fR) ~eo+ Y cimi (9.14)
1=1

the form of the quadratic polynomial model is:

n n n
f(x) ~co + Z CiTi + Z Z Cij i (9.15)
=1

i=1 j>i
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and the form of the cubic polynomial model is:

f(x) ~ ¢y + Z ;T + Z Z Cijxixj + Z Z Z CijhTiZ L) (9.16)
i=1

i=1 j>i i=1 j>i k>j

In all of the polynomial models, f (x) is the response of the polynomial model; the z;, z;, z terms are the com-
ponents of the n-dimensional design parameter values; the ¢y , ¢; , ¢;; , ¢;ji terms are the polynomial coefficients,
and n is the number of design parameters. The number of coefficients, n., depends on the order of polynomial
model and the number of design parameters. For the linear polynomial:

=n+1 9.17)

Nepinear

for the quadratic polynomial:

1 2
anuad = (n + )(n + ) (9-18)
2
and for the cubic polynomial:

34+6n2+1ln+6
Neeubic — (n on ;— n ) (9.19)

There must be at least n. data samples in order to form a fully determined linear system and solve for the polyno-
mial coefficients. In Dakota, a least-squares approach involving a singular value decomposition numerical method
is applied to solve the linear system.

The utility of the polynomial models stems from two sources: (1) over a small portion of the parameter space, a
low-order polynomial model is often an accurate approximation to the true data trends, and (2) the least-squares
procedure provides a surface fit that smooths out noise in the data. For this reason, the surrogate-based opti-
mization strategy often is successful when using polynomial models, particularly quadratic models. However, a
polynomial surface fit may not be the best choice for modeling data trends over the entire parameter space, unless
it is known a priori that the true data trends are close to linear, quadratic, or cubic. See [89] for more information
on polynomial models.

9.4.3.5 Kriging/Gaussian-Process Spatial Interpolation Models

In Dakota 5.2, we have 2 versions of spatial interpolation models. One is located in Dakota itself and the

other in the Surfpack subpackage of Dakota which can be compiled in a stand alone mode. These models

are denoted as kriging dakota and kriging surfpack or as gaussian_process dakota and
gaussian_process surfpack. Inprior Dakotareleases, the dakota version was referred to as the gaussian_process
model while the surfpack version was referred to as the kriging model. As of DAKTOA 5.2, specifying

only gaussian_process or kriging will default to the surfpack version in all contexts except Bayesian

calibration. For now, both versions are supported but the dakota version is deprecated and intended to be re-

moved in a future release. The two kriging or gaussian_process models are very similar: the differences

between them are explained in more detail below.

The Kriging, also known as Gaussian process (GP), method uses techniques developed in the geostatistics and
spatial statistics communities ( [16], [77]) to produce smooth surface fit models of the response values from a set
of data points. The number of times the fitted surface is differentiable will depend on the correlation function that
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is used. Currently, the Gaussian correlation function is the only option for either version included in Dakota; this
makes the GP model C°°-continuous. The form of the GP model is

f@)~g(@)"B+r@)"R(f-Gp) (9.20)

where z is the current point in n-dimensional parameter space; g(z) is the vector of trend basis functions evaluated
at z; (3 is a vector containing the generalized least squares estimates of the trend basis function coefficients; r(z)
is the correlation vector of terms between z and the data points; R is the correlation matrix for all of the data
points; f is the vector of response values; and G is the matrix containing the trend basis functions evaluated at all
data points. The terms in the correlation vector and matrix are computed using a Gaussian correlation function
and are dependent on an n-dimensional vector of correlation parameters, 8 = {61, ..., 97,}T. By default, Dakota
determines the value of § using a Maximum Likelihood Estimation (MLE) procedure. However, the user can also
opt to manually set them in the gaussian_process surfpack model by specifying a vector of correlation
lengths, [ = {l1,...,0,}T where 6; = 1/(2(?). This definition of correlation lengths makes their effect on the
GP model’s behavior directly analogous to the role played by the standard deviation in a normal (a.k.a. Gaussian)
distribution. In the gaussian_process surpack model, we used this analogy to define a small feasible
region in which to search for correlation lengths. This region should (almost) always contain some correlation
matrices that are well conditioned and some that are optimal, or at least near optimal. More details on Kriging/GP
models may be found in [53].

Since a GP has a hyper-parametric error model, it can be used to model surfaces with slope discontinuities along
with multiple local minima and maxima. GP interpolation is useful for both SBO and OUU, as well as for studying
the global response value trends in the parameter space. This surface fitting method needs a minimum number
of design points equal to the sum of the number of basis functions and the number of dimensions, n, but it is
recommended to use at least double this amount.

The GP model is guaranteed to pass through all of the response data values that are used to construct the model.
Generally, this is a desirable feature. However, if there is considerable numerical noise in the response data, then
a surface fitting method that provides some data smoothing (e.g., quadratic polynomial, MARS) may be a better
choice for SBO and OUU applications. Another feature of the GP model is that the predicted response values,
f(x), decay to the trend function, g(z)” 8, when z is far from any of the data points from which the GP model
was constructed (i.e., when the model is used for extrapolation).

As mentioned above, there are two gaussian_process models in Dakota 5.2, the surfpack version and
the dakota version. More details on the gaussian_process dakota model can be found in [85]. The
differences between these models are as follows:

e Trend Function: The GP models incorporate a parametric trend function whose purpose is to capture large-
scale variations. In both models, the trend function can be a constant, linear,or reduced quadratic (main
effects only, no interaction terms) polynomial. This is specified by the keyword t rend followed by one of
constant, linear, or reduced_quadratic (in Dakota 5.0 and earlier, the reduced quadratic option
for the dakota version was selected using the keyword, quadratic). The
gaussian_process surfpack model has the additional option of a full (i.e. it includes interaction
terms) quadratic polynomial; this is accessed by following the t rend keyword with quadratic.

e Correlation Parameter Determination: Both of the gaussian_process models use a Maximum Likeli-
hood Estimation (MLE) approach to find the optimal values of the hyper-parameters governing the mean and
correlation functions. By default both models use the global optimization method called DIRECT, although
they search regions with different extents. For the gaussian_process dakota model, DIRECT is
the only option. The gaussian_process surfpack model has several options for the optimization
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method used. These are specified by the optimization_method keyword followed by one of these
strings:

— "global’ which uses the default DIRECT optimizer,
— "local’ which uses the CONMIN optimizer,

— ’sampling’ which generates several random guesses and picks the candidate with greatest likeli-
hood, and

— "none’

The "none’ option, and the starting location of the  local’ optimization, default to the center, in
log(correlation length) scale, of the of small feasible region. However, these can also be user specified
with the correlation_lengths keyword followed by a list of n real numbers. The total number
of evaluations of the gaussian_process surfpack model’s likelihood function can be controlled
using the max_trials keyword followed by a positive integer. Note that we have found the ' global’
optimization method to be the most robust.

o Ill-conditioning. One of the major problems in determining the governing values for a Gaussian process
or Kriging model is the fact that the correlation matrix can easily become ill-conditioned when there
are too many input points close together. Since the predictions from the Gaussian process model in-
volve inverting the correlation matrix, ill-conditioning can lead to poor predictive capability and should
be avoided. The gaussian_process surfpack model defines a small feasible search region for cor-
relation lengths, which should (almost) always contain some well conditioned correlation matrices. In
Dakota 5.1, the kriging (now gaussian_process surfpack or kriging surfpack) model
avoided ill-conditioning by explicitly excluding poorly conditioned R from consideration on the basis of
their having a large (estimate of) condition number; this constraint acted to decrease the size of admissible
correlation lengths. Note that a sufficiently bad sample design could require correlation lengths to be so
short that any interpolatory Kriging/GP model would become inept at extrapolation and interpolation.

The gaussian_process dakota model has two features to overcome ill-conditioning. The first is
that the algorithm will add a small amount of noise to the diagonal elements of the matrix (this is often
referred to as a “nugget”) and sometimes this is enough to improve the conditioning. The second is that
the user can specify to build the GP based only on a subset of points. The algorithm chooses an “optimal”
subset of points (with respect to predictive capability on the remaining unchosen points) using a greedy
heuristic. This option is specified with the keyword point_selection in the input file.

As of Dakota 5.2, the gaussian_process surfpack model has a similar capability. Points are
not discarded prior to the construction of the model. Instead, within the maximum likelihood optimiza-
tion loop, when the correlation matrix violates the explicit (estimate of) condition number constraint, the
gaussian_process surfpack model will perform a pivoted Cholesky factorization of the correlation
matrix. A bisection search is then used to efficiently find the last point for which the reordered correlation
matrix is not too ill-conditioned. Subsequent reordered points are excluded from the GP/Kriging model for
the current set of correlation lengths, i.e. they are not used to construct this GP model or compute its like-
lihood. When necessary, the gaussian_process surfpack model will automatically decrease the
order of the polynomial trend function. Once the maximum likelihood optimization has been completed,
the subset of points that is retained will be the one associated with the most likely set of correlation lengths.
Note that a matrix being ill-conditioned means that its rows or columns contain a significant amount of
duplicate information. Since the points that were discarded were the ones that contained the least unique
information, they should be the ones that are the easiest to predict and provide maximum improvement of
the condition number. However, the gaussian process surfpack model is not guaranteed to ex-
actly interpolate the discarded points. Warning: when two very nearby points are on opposite sides of a

Dakota Version 5.3 User’s Manual generated on February 13, 2013



158 CHAPTER 9. MODELS

discontinuity, it is possible for one of them to be discarded by this approach.

Note that a pivoted Cholesky factorization can be significantly slower than the highly optimized imple-
mentation of non-pivoted Cholesky factorization in typical LAPACK distributions. A consequence of
this is that the gaussian_process surfpack model can take significantly more time to build than
the gaussian_process dakota version. However, tests indicate that the gaussian_process
surfpack version will often be more accurate and/or require fewer evaluations of the true function than
the gaussian_process dakota. For this reason, the gaussian_process surfpack version is
the default option as of Dakota 5.2.

e Gradient Enhanced Kriging (GEK). As of Dakota 5.2, the use_derivatives keyword will cause the
gaussian.-process surfpack model to be built from a combination of function value and gradient
information. The gaussian_process dakota model does not have this capability. Incorporating gra-
dient information will only be beneficial if accurate and inexpensive derivative information is available, and
the derivatives are not infinite or nearly so. Here “inexpensive” means that the cost of evaluating a function
value plus gradient is comparable to the cost of evaluating only the function value, for example gradients
computed by analytical, automatic differentiation, or continuous adjoint techniques. It is not cost effective to
use derivatives computed by finite differences. In tests, GEK models built from finite difference derivatives
were also significantly less accurate than those built from analytical derivatives. Note that GEK’s corre-
lation matrix tends to have a significantly worse condition number than Kriging for the same sample design.

This issue was addressed by using a pivoted Cholesky factorization of Kriging’s correlation matrix (which
is a small sub-matrix within GEK’s correlation matrix) to rank points by how much unique information
they contain. This reordering is then applied to whole points (the function value at a point immediately
followed by gradient information at the same point) in GEK’s correlation matrix. A standard non-pivoted
Cholesky is then applied to the reordered GEK correlation matrix and a bisection search is used to find the
last equation that meets the constraint on the (estimate of) condition number. The cost of performing piv-
oted Cholesky on Kriging’s correlation matrix is usually negligible compared to the cost of the non-pivoted
Cholesky factorization of GEK’s correlation matrix. In tests, it also resulted in more accurate GEK models
than when pivoted Cholesky or whole-point-block pivoted Cholesky was performed on GEK’s correlation
matrix.

9.4.3.6 Artificial Neural Network (ANN) Models

The ANN surface fitting method in Dakota employs a stochastic layered perceptron (SLP) artificial neural network
based on the direct training approach of Zimmerman [133]. The SLP ANN method is designed to have a lower
training cost than traditional ANNs. This is a useful feature for SBO and OUU where new ANNs are constructed
many times during the optimization process (i.e., one ANN for each response function, and new ANNs for each
optimization iteration). The form of the SLP ANN model is

f(x) ~ tanh(tanh((xAq + 00) A1 + 61)) (9.21)

where x is the current point in n-dimensional parameter space, and the terms Ay, 6y, A1, 61 are the matrices and
vectors that correspond to the neuron weights and offset values in the ANN model. These terms are computed
during the ANN training process, and are analogous to the polynomial coefficients in a quadratic surface fit. A
singular value decomposition method is used in the numerical methods that are employed to solve for the weights
and offsets.

The SLP ANN is a non parametric surface fitting method. Thus, along with kriging and MARS, it can be used
to model data trends that have slope discontinuities as well as multiple maxima and minima. However, unlike
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kriging, the ANN surface is not guaranteed to exactly match the response values of the data points from which
it was constructed. This ANN can be used with SBO and OUU strategies. As with kriging, this ANN can be
constructed from fewer than n.,,,, data points, however, it is a good rule of thumb to use at least n.,,,, data
points when possible.

9.4.3.7 Multivariate Adaptive Regression Spline (MARS) Models

This surface fitting method uses multivariate adaptive regression splines from the MARS3.5 package [39] devel-
oped at Stanford University.

The form of the MARS model is based on the following expression:

) M
fx) =" amBm(x) (9.22)
m=1

where the a,, are the coefficients of the truncated power basis functions B,,, and M is the number of basis
functions. The MARS software partitions the parameter space into subregions, and then applies forward and
backward regression methods to create a local surface model in each subregion. The result is that each subregion
contains its own basis functions and coefficients, and the subregions are joined together to produce a smooth,
C?-continuous surface model.

MARS is a nonparametric surface fitting method and can represent complex multimodal data trends. The regres-
sion component of MARS generates a surface model that is not guaranteed to pass through all of the response
data values. Thus, like the quadratic polynomial model, it provides some smoothing of the data. The MARS ref-
erence material does not indicate the minimum number of data points that are needed to create a MARS surface
model. However, in practice it has been found that at least ., ,,, and sometimes as many as 2 to 4 times nc,,,,»
data points are needed to keep the MARS software from terminating. Provided that sufficient data samples can
be obtained, MARS surface models can be useful in SBO and OUU applications, as well as in the prediction of
global trends throughout the parameter space.

9.4.3.8 Radial Basis Functions

Radial basis functions are functions whose value typically depends on the distance from a center point, called the
centroid, c. The surrogate model approximation is then built up as the sum of K weighted radial basis functions:

K
Fe) = wio(] x —exc ) 9.23)
k=1

where the ¢ are the individual radial basis functions. These functions can be of any form, but often a Gaussian
bell-shaped function or splines are used. Our implementation uses a Gaussian radial basis function. The weights
are determined via a linear least squares solution approach. See [94] for more details.

9.4.3.9 Moving Least Squares

Moving Least Squares can be considered a more specialized version of linear regression models. In linear re-
gression, one usually attempts to minimize the sum of the squared residuals, where the residual is defined as
the difference between the surrogate model and the true model at a fixed number of points. In weighted least
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squares, the residual terms are weighted so the determination of the optimal coefficients governing the polyno-
mial regression function, denoted by f(x), are obtained by minimizing the weighted sum of squares at N data
points:

N
" wal]l F(xa) — Flxa) ) ©.24)

Moving least squares is a further generalization of weighted least squares where the weighting is “moved” or
recalculated for every new point where a prediction is desired. [91] The implementation of moving least squares
is still under development. We have found that it works well in trust region methods where the surrogate model
is constructed in a constrained region over a few points. It does not appear to be working as well globally, at least
at this point in time.

9.4.4 Multifidelity Surrogate Models

A second type of surrogate is the model hierarchy type (also called multifidelity, variable fidelity, variable com-
plexity, etc.). In this case, a model that is still physics-based but is of lower fidelity (e.g., coarser discretization,
reduced element order, looser convergence tolerances, omitted physics) is used as the surrogate in place of the
high-fidelity model. For example, an inviscid, incompressible Euler CFD model on a coarse discretization could
be used as a low-fidelity surrogate for a high-fidelity Navier-Stokes model on a fine discretization.

94.5 Reduced Order Models

A third type of surrogate model involves reduced-order modeling techniques such as proper orthogonal decompo-
sition (POD) in computational fluid dynamics (also known as principal components analysis or Karhunen-Loeve
in other fields) or spectral decomposition (also known as modal analysis) in structural dynamics. These surrogate
models are generated directly from a high-fidelity model through the use of a reduced basis (e.g., eigenmodes for
modal analysis or left singular vectors for POD) and projection of the original high-dimensional system down to a
small number of generalized coordinates. These surrogates are still physics-based (and may therefore have better
predictive qualities than data fits), but do not require multiple system models of varying fidelity (as required for
model hierarchy surrogates).

9.4.6 Surrogate Model Selection
This section offers some guidance on choosing from among the available surrogate model types.

e For Surrogate Based Local Optimization, i.e. the surrogate_based_local method, with a trust region,
either surrogate local taylor_series or surrogate multipoint tana will probably work
best. If for some reason you wish or need to use a global surrogate (not recommended) then the best of these
options is likely to be either surrogate global gaussian_process surfpack or surrogate
global moving_least_squares.

e For Efficient Global Optimization (EGO), i.e. the efficient_global method, the default
gaussian_process surfpack is likely to find a more optimal value and/or use fewer true function
evaluations than the alternative, gaussian_process dakota. However, the surfpack version will
likely take more time to build than the dakota version. Note that currently the use_derivatives
keyword is not recommended for use with EGO based methods.
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e For EGO based global interval estimation (EGIE), i.e. the global_interval_est ego method, the de-
fault gaussian_process surfpack will likely work better than the alternative gaussian_process
dakota.

e For Efficient Global Reliability Analysis (EGRA), i.e. the global_reliability methodthe surfpack
and dakota versions of the gaussian process tend to give similar answers with the dakot a version tending
to use fewer true function evaluations. Since this is based on EGO, it is likely that the default surfpack
version is more accurate, although this has not been rigorously demonstrated.

e For EGO based Dempster-Shafer Theory of Evidence, i.e. the global_evidence ego method, the
default gaussian_process surfpack will often use significantly fewer true function evaluations than
the alternative gaussian_process dakota.

e When using a global surrogate to extrapolate, either the gaussian_process surfpack orpolynomial
quadraticor polynomial cubic is recommended.

e When there is over roughly two or three thousand data points and you wish to interpolate (or approximately
interpolate) then a Taylor series, Radial Basis Function Network, or Moving Least Squares fit is recom-
mended. The only reason that the gaussian_process surfpack model is not recommended is that it
can take a considerable amount of time to construct when the number of data points is very large. Use of
the third party MARS package included in Dakota is generally discouraged.

e In other situations that call for a global surrogate, the gaussian_process surfpack is generally
recommended. The use_derivatives keyword will only be useful if accurate and an inexpensive
derivatives are available. Finite difference derivatives are disqualified on both counts. However, derivatives
generated by analytical, automatic differentiation, or continuous adjoint techniques can be appropriate. Cur-
rently, first order derivatives, i.e. gradients, are the highest order derivatives that can be used to construct
the gaussian_process surfpack model; Hessians will not be used even if they are available.

9.5 Nested Models

Nested models utilize a sub-iterator and a sub-model to perform a complete iterative study as part of every evalu-
ation of the model. This sub-iteration accepts variables from the outer level, performs the sub-level analysis, and
computes a set of sub-level responses which are passed back up to the outer level. As described in the Models
chapter of the Reference Manual [3], mappings are employed for both the variable inputs to the sub-model and
the response outputs from the sub-model.

In the variable mapping case, primary and secondary variable mapping specifications are used to map from the top-
level variables into the sub-model variables. These mappings support three possibilities in any combination: (1)
insertion of an active top-level variable value into an identified sub-model distribution parameter for an identified
active sub-model variable, (2) insertion of an active top-level variable value into an identified active sub-model
variable value, and (3) addition of an active top-level variable value as an inactive sub-model variable, augmenting
the active sub-model variables.

In the response mapping case, primary and secondary response mapping specifications are used to map from the
sub-model responses back to the top-level responses. These specifications provide real-valued multipliers that are
applied to the sub-iterator response results to define the outer level response set. These nested data results may be
combined with non-nested data through use of the “optional interface” component within nested models.

The nested model constructs admit a wide variety of multi-iterator, multi-model solution approaches. For exam-
ple, optimization within optimization (for hierarchical multidisciplinary optimization), uncertainty quantification
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within uncertainty quantification (for second-order probability), uncertainty quantification within optimization
(for optimization under uncertainty), and optimization within uncertainty quantification (for uncertainty of op-
tima) are all supported, with and without surrogate model indirection. Several examples of nested model usage
are provided in Chapter 16, most notably mixed epistemic-aleatory UQ in Section 16.1, optimization under un-
certainty (OUU) in Section 16.2, and surrogate-based UQ in Section 16.3.
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Chapter 10

Variables

10.1 Overview

The variables specification in a Dakota input file specifies the parameter set to be iterated by a particular
method. In the case of an optimization study, these variables are adjusted in order to locate an optimal design; in
the case of parameter studies/sensitivity analysis/design of experiments, these parameters are perturbed to explore
the parameter space; and in the case of uncertainty analysis, the variables are associated with distribution/interval
characterizations which are used to compute corresponding distribution/interval characterizations for response
functions. To accommodate these and other types of studies, Dakota supports design, uncertain, and state variable
types for continuous and discrete variable domains, where uncertain types can be further categorized as either
aleatory or epistemic and discrete domains can be further categorized as discrete range, discrete integer set, or
discrete real set.

This chapter will present a brief overview of the types of variables and their uses, as well as cover some user
issues relating to file formats and the active set vector. For a detailed description of variables section syntax and
example specifications, refer to the Variables Commands chapter in the Dakota Reference Manual [3].

10.2 Design Variables

Design variables are those variables which are modified for the purposes of computing an optimal design. These
variables may be continuous (real-valued between bounds), discrete range (integer-valued between bounds), dis-
crete set of integers (integer-valued from finite set), and discrete set of reals (real-valued from finite set).

10.2.1 Continuous Design Variables

The most common type of design variables encountered in engineering applications are of the continuous type.
These variables may assume any real value (e.g., 12.34, —1.735e+07) within their bounds. All but a handful
of the optimization algorithms in Dakota support continuous design variables exclusively.
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10.2.2 Discrete Design Variables

Engineering design problems may contain discrete variables such as material types, feature counts, stock gauge
selections, etc. These variables may assume only a fixed number of values, as compared to a continuous variable
which has an uncountable number of possible values within its range. Discrete variables may involve a range of
consecutive integers (x can be any integer between 1 and 10), a set of integer values (z can be 101, 212, or
355), or a set of real values (e.g., z canbe 4.2, 6.4, 0r 8.5).

Discrete variables may be classified as either “categorical” or “noncategorical.” In the latter noncategorical case,
the discrete requirement can be relaxed during the solution process since the model can still compute meaningful
response functions for values outside the allowed discrete range or set. For example, a discrete variable repre-
senting the thickness of a structure is generally a noncategorical variable since it can assume a continuous range
of values during the algorithm iterations, even if it is desired to have a stock gauge thickness in the end. In the
former categorical case, the discrete requirement cannot be relaxed since the model cannot obtain a solution for
values outside the range or set. For example, feature counts are generally categorical discrete variables, since
most computational models will not support a non-integer value for the number of instances of some feature (e.g.,
number of support brackets).

Gradient-based optimization methods cannot be directly applied to problems with discrete variables since deriva-
tives only exist for a variable continuum. For problems with noncategorical variables, branch and bound tech-
niques can be used to relax the discrete requirements and apply gradient-based methods to a series of generated
subproblems. For problems with categorical variables, nongradient-based methods (e.g., coliny_ea) are com-
monly used.

In addition to engineering applications, many non-engineering applications in the fields of scheduling, logistics,
and resource allocation contain discrete design parameters. Within the Department of Energy, solution techniques
for these problems impact programs in stockpile evaluation and management, production planning, nonprolifer-
ation, transportation (routing, packing, logistics), infrastructure analysis and design, energy production, environ-
mental remediation, and tools for massively parallel computing such as domain decomposition and meshing.

10.2.2.1 Discrete Design Integer Variables

There are two types of discrete design integer variables supported by Dakota.

e The discrete_design_range specification supports a range of consecutive integers between specified
lower_bounds and upper_bounds.

e Thediscrete_design_set_integer specification supports a set of enumerated integer values through
the set_values specification. The set of values specified is stored internally as an STL set container,
which enforces an ordered, unique representation of the integer data. Underlying this set of ordered, unique
integers is a set of indices that run from 0 to one less than the number of set values. These indices are used
by some iterative algorithms (e.g., parameter studies, SCOLIB iterators) for simplicity in discrete value
enumeration when the actual corresponding set values are immaterial. In the case of parameter studies, this
index representation is exposed through certain step and partition control specifications (see Chapter 3).

10.2.2.2 Discrete Design Real Variables

There is one type of discrete design real variable supported by Dakota.
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e The discrete_design_set_real specification specification supports a set of enumerated real val-
ues through the set_values specification. As for the discrete integer set variables described in Sec-
tion 10.2.2.1, internal storage of the set values is ordered and unique and an underlying index representation
is exposed for the specification of some iterative algorithms.

10.3 Uncertain Variables

Deterministic variables (i.e., those with a single known value) do not capture the behavior of the input variables in
all situations. In many cases, the exact value of a model parameter is not precisely known. An example of such an
input variable is the thickness of a heat treatment coating on a structural steel I-beam used in building construction.
Due to variabilities and tolerances in the coating process, the thickness of the layer is known to follow a normal
distribution with a certain mean and standard deviation as determined from experimental data. The inclusion of
the uncertainty in the coating thickness is essential to accurately represent the resulting uncertainty in the response
of the building.

10.3.1 Aleatory Uncertain Variables

Aleatory uncertainties are irreducible variabilities inherent in nature. They are characterized by having a suffi-
ciently rich set of data as to allow modeling using probability distributions, and probabilistic methods are com-
monly used for propagating nput aleatory uncertainties described by probability distribution specifications. The
two following sections describe the continuous and discrete aleatory uncertain variables supported by Dakota.

For aleatory random variables, Dakota supports a user-supplied correlation matrix to provide correlations among
the input variables. By default, the correlation matrix is set to the identity matrix, i.e., no correlation among the
uncertain variables.

For additional information on random variable probability distributions, refer to [63] and [113]. Refer to the
Dakota Reference Manual [3] for more detail on the uncertain variable specifications and to Chapter 5 for a
description of methods available to quantify the uncertainty in the response.

10.3.1.1 Continuous Aleatory Uncertain Variables

e Normal: a probability distribution characterized by a mean and standard deviation. Also referred to as
Gaussian. Bounded normal is also supported by some methods with an additional specification of lower
and upper bounds.

e Lognormal: a probability distribution characterized by a mean and either a standard deviation or an error
factor. The natural logarithm of a lognormal variable has a normal distribution. Bounded lognormal is also
supported by some methods with an additional specification of lower and upper bounds.

e Uniform: a probability distribution characterized by a lower bound and an upper bound. Probability is
constant between the bounds.

e Loguniform: a probability distribution characterized by a lower bound and an upper bound. The natural
logarithm of a loguniform variable has a uniform distribution.

e Triangular: a probability distribution characterized by a mode, a lower bound, and an upper bound.

e Exponential: a probability distribution characterized by a beta parameter.
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Beta: a flexible probability distribution characterized by a lower bound and an upper bound and alpha and
beta parameters. The uniform distribution is a special case.

Gamma: a flexible probability distribution characterized by alpha and beta parameters. The exponential
distribution is a special case.

Gumbel: the Type I Largest Extreme Value probability distribution. Characterized by alpha and beta pa-
rameters.

Frechet: the Type II Largest Extreme Value probability distribution. Characterized by alpha and beta pa-
rameters.

Weibull: the Type III Smallest Extreme Value probability distribution. Characterized by alpha and beta
parameters.

Histogram Bin: an empirically-based probability distribution characterized by a set of (x, y) pairs that map
out histogram bins (a continuous interval with associated bin count).

10.3.1.2 Discrete Aleatory Uncertain Variables

The following types of discrete aleatory uncertain variables are available:

Poisson: integer-valued distribution used to predict the number of discrete events that happen in a given
time interval.

Binomial: integer-valued distribution used to predict the number of failures in a number of independent
tests or trials.

Negative Binomial: integer-valued distribution used to predict the number of times to perform a test to have
a target number of successes.

Geometric: integer-valued distribution used to model the number of successful trials that might occur before
a failure is observed.

Hypergeometric: integer-valued distribution used to model the number of failures observed in a set of tests
that has a known proportion of failures.

Histogram Point: an empirically-based probability distribution characterized by a set of real-valued (x, y)
pairs that map out histogram points (a discrete point value with associated count).

10.3.2 Epistemic Uncertain Variables

Epistemic uncertainties are reducible uncertainties resulting from a lack of knowledge. For epistemic uncertain-
ties, data is generally sparse, making the use of probability theory questionable and leading to nonprobabilistic
methods based on interval specifications Dakota currently supports one epistemic uncertain variable type.
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10.3.2.1 Continuous Epistemic Uncertain Variables

e Interval: an interval-based specification characterized by sets of lower and upper bounds and Basic Proba-
bility Assignments (BPAs) associated with each interval. The intervals may be overlapping, contiguous, or
disjoint, and a single interval (with probability = 1) per variable is an important special case. The interval
distribution is not a probability distribution, as the exact structure of the probabilities within each interval
is not known. It is commonly used with epistemic uncertainty methods.

10.4 State Variables

State variables consist of “other” variables which are to be mapped through the simulation interface, in that they
are not to be used for design and they are not modeled as being uncertain. State variables provide a conve-
nient mechanism for parameterizing additional model inputs which, in the case of a numerical simulator, might
include solver convergence tolerances, time step controls, or mesh fidelity parameters. For additional model pa-
rameterizations involving strings (e.g., “meshl.exo0”), refer to the analysis components specification described in
Section 10.6.1 and in the Interface Commands chapter of the Dakota Reference Manual [3]. Similar to the design
variables discussed in Section 10.2, state variables can be a continuous range (real-valued between bounds), a
discrete range (integer-valued between bounds), a discrete integer-valued set, or a discrete real-valued set.

State variables, as with other types of variables, are viewed differently depending on the method in use. Since
these variables are neither design nor uncertain variables, algorithms for optimization, least squares, and uncer-
tainty quantification do not iterate on these variables; i.e., they are not active and are hidden from the algorithm.
However, Dakota still maps these variables through the user’s interface where they affect the computational model
in use. This allows optimization, least squares, and uncertainty quantification studies to be executed under dif-
ferent simulation conditions (which will result, in general, in different results). Parameter studies and design of
experiments methods, on the other hand, are general-purpose iterative techniques which do not draw a distinction
between variable types. They include state variables in the set of variables to be iterated, which allows these
studies to explore the effect of state variable values on the response data of interest.

In the future, state variables might be used in direct coordination with an optimization, least squares, or uncertainty
quantification algorithm. For example, state variables could be used to enact model adaptivity through the use of
a coarse mesh or loose solver tolerances in the initial stages of an optimization with continuous model refinement
as the algorithm nears the optimal solution.

10.5 Management of Mixed Variables by Iterator

10.5.1 View

As alluded to in the previous section, the iterative method selected for use in Dakota determines what subset, or
view, of the variables data is active in the iteration. The general case of having a mixture of various different
types of variables is supported within all of the Dakota methods even though certain methods will only modify
certain types of variables (e.g., optimizers and least squares methods only modify design variables, and uncertainty
quantification methods typically only utilize uncertain variables). This implies that variables which are not under
the direct control of a particular iterator will be mapped through the interface in an unmodified state. This allows
for a variety of parameterizations within the model in addition to those which are being used by a particular
iterator, which can provide the convenience of consolidating the control over various modeling parameters in a
single file (the Dakota input file). An important related point is that the variable set that is active with a particular
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iterator is the same variable set for which derivatives are typically computed (see Section 12.3).

There are certain situations where the user may want to explicitly control the subset of variables that is considered
active for a certain Dakota method. This is done by specifying the keyword act ive in the variables specification
block, followed by one of the following: all, design, uncertain, aleatory, epistemic, or state.
Specifying one of these subsets of variables will allow the Dakota method to operate on the specified variable
types and override the defaults. For example, the default behavior for a nondeterministic sampling method is to
sample the uncertain variables. However, if the user specifed active all in the variables specification block,
the sampling would be performed over all variables (e.g. design and state variables as well as uncertain variables).
This may be desired in situations such as surrogate based optimization under uncertainty, where a surrogate may
be built over both design and uncertain variables. Another situation where one may want the fine-grained control
available by specifying one of these variable types is when one has state variables but only wants to sample over
the design variables when constructing a surrogate model. Finally, more sophisticated uncertainty studies may
involve various combinations of epistemic vs. aleatory variables being active in nested models.

10.5.2 Domain

Another control that the user can specify in the variables specification block controls the domain type. We have
two domains currently: mixed and relaxed. Both domain types can have design, uncertain, and state variables. The
domain specifies how the discrete variables are treated. If the user specifies mixed in the variable specification
block, the continuous and discrete variables are treated separately. If the user specifies relaxed in the variable
specification block, the discrete variables are relaxed and treated as continuous variables. This may be useful
in optimization problems involving both continuous and discrete variables when a user would like to use an
optimization method that is designed for continuous variable optimization. All Dakota methods have a default
value of mixed for the domain type except for the branch-and-bound method which has a default domain type of
relaxed. Note that the branch-and-bound method is under development at this time.

10.5.3 Precedence

If the user does not specify any explicit override of the active view of the variables, Dakota then considers the
response function specification. If the user specifies objective functions or calibration terms in the response
specification block, the active variables will be the design variables. If the user specifies the more generic re-
sponse type, response_functions, general response functions do not have a specific interpretation the way
objective_functions or calibration_terms do. In the case of generic response functions, Dakota
then tries to infer the active view from the method. If the method is a parameter study, or any of the methods
available under dace, psuade, or fsu methods, the active view is set to all variables. For uncertainty quantification
methods, if the method is sampling, then the view is set to aleatory if only aleatory variables are present, epistemic
if only epistemic variables are present, or uncertain (covering both aleatory and epistemic) if both are present. If
the uncertainty method involves interval estimation or evidence calculations, the view is set to epistemic. For other
uncertainty quantification methods not mentioned in the previous sentences (e.g., reliability methods or stochastic
expansion methods), the view is set to aleatory. Finally, for verification studies using the Richardson extrapolation
method, the active view is set to state. Note that in surrogate-based optimization, where the surrogate is built on
points defined by the method defined by the dace_method_pointer, the sampling used to generate the points
is performed only over the design variables as a default unless otherwise specified (e.g. state variables will not be
sampled for surrogate construction).

With respect to domain type, if the user does not specify an explicit override of mixed or relaxed, Dakota
infers the domain type from the method. As mentioned above, all methods currently use a mixed domain as a
default, except the branch-and-bound method which is under development.
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<int> variables

<double> <label_cdv;> = to nNedo)
<int> <label_ddiv;> = to nggiv)
<double> <label_ddrv;> = to Ngdry)
<double> <label_cauv;> = to Neguv)

<int> <label_dauiv;>
<double> <label_daurv;>
<double> <label_ceuv;>

<int> <label_deuiv;>

to Ndauiv)
to Ndaurv)
to neeuv)

to nNdewiv)

[ R e a a = s T SR S =
Il
PR R R RRR R R R R R

A~~~ o~~~ o~~~ o~~~

<double> <label_deurv;> = to Ngeurv)
<double> <label_csv;> = to Negy)
<int> <label_dsiv;> = to Ngsiv)
<double> <label_dsrv;> = to nNgsrv)
<int> functions

<int> ASV_i:label_response; (i =1 to m)
<int> derivative_variables

<int> DVV_i:label_cdv; (i =1 to p)

Figure 10.1: Parameters file data format - standard option.

10.6 Dakota Parameters File Data Format

Simulation interfaces which employ system calls and forks to create separate simulation processes must commu-
nicate with the simulation code through the file system. This is accomplished through the reading and writing of
parameters and results files. Dakota uses a particular format for this data input/output. Depending on the user’s
interface specification, Dakota will write the parameters file in either standard or APREPRO format (future XML
formats are planned). The former option uses a simple “value tag” format, whereas the latter option uses a “{
tag = value }” format for compatibility with the APREPRO utility [106] (as well as DPrePro, BPREPRO,
and JPrePost variants).

10.6.1 Parameters file format (standard)

Prior to invoking a simulation, Dakota creates a parameters file which contains the current parameter values and
a set of function requests. The standard format for this parameters file is shown in Figure 10.1.

where “<int>” denotes an integer value, “<double>" denotes a double precision value, and “<string>"
denotes a string value. Each of the colored blocks (black for variables, blue for active set vector, red for derivative
variables vector, and green for analysis components) denotes an array which begins with an array length and a
descriptive tag. These array lengths are useful for dynamic memory allocation within a simulator or filter program.

The first array for variables begins with the total number of variables (n) with its identifier string “variables.”
The next n lines specify the current values and descriptors of all of the variables within the parameter set in
the following order: continuous design, discrete integer design (integer range, integer set), discrete real design
(real set), continuous aleatory uncertain (normal, lognormal, uniform, loguniform, triangular, exponential, beta,
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gamma, gumbel, frechet, weibull, histogram bin), discrete integer aleatory uncertain (poisson, binomial, negative
binomial, geometric, hypergeometric), discrete real aleatory uncertain (histogram point), continuous epistemic
uncertain (interval), discrete integer epistemic uncertain (none at this time), discrete real epistemic uncertain
(none at this time), continuous state, discrete integer state (integer range, integer set), and discrete real state
(real set) variables. This ordering is consistent with the lists in Sections 10.2.2.1, 10.3.1.1 and 10.3.1.2 and the
specification order in dakota.input.txt. The lengths of these vectors add to a total of n (that is, n = n¢qy + Nddiv +
Nddrv + Neauv + Ndawiv T Ndaurv T Neewv T Ndewiv T Ndeurv + Nesv + Ndsiv + ndsr’u)~ If any of the variable types
are not present in the problem, then its block is omitted entirely from the parameters file. The tags are the variable
descriptors specified in the user’s Dakota input file, or if no descriptors have been specified, default descriptors
are used.

The second array for the active set vector (ASV) begins with the total number of functions (m) and its identifier
string “functions.” The next m lines specify the request vector for each of the m functions in the response
data set followed by the tags “ASV_i:label_response”, where the label is either a user-provided response
descriptor or a default-generated one. These integer codes indicate what data is required on the current function
evaluation and are described further in Section 10.7.

The third array for the derivative variables vector (DVV) begins with the number of derivative variables (p) and its
identifier string “derivative_variables.” The next p lines specify integer variable identifiers followed by
the tags “DVV_i : label_cdv”. These integer identifiers are used to identify the subset of variables that are active
for the calculation of derivatives (gradient vectors and Hessian matrices), and correspond to the list of variables
in the first array (e.g., an identifier of 2 indicates that the second variable in the list is active for derivatives). The
labels are again taken from user-provided or default variable descriptors.

The final array for the analysis components (AC) begins with the number of analysis components (q) and its iden-
tifier string “analysis_components.” The next g lines provide additional strings for use in specializing a sim-
ulation interface followed by the tags “AC_i:analysis_driver_name”, where analysis_driver_name
indicates the driver associated with this component. These strings are specified in a user’s input file for a set of
analysis_drivers using the analysis_components specification. The subset of the analysis compo-
nents used for a particular analysis driver is the set passed in a particular parameters file.

Several standard-format parameters file examples are shown in Section 11.6.

10.6.2 Parameters file format (APREPRO)

For the APREPRO format option, the same data is present and the same ordering is used as in the standard
format. The only difference is that values are associated with their tags within “{ tag = value }” constructs
as shown in Figure 10.2. An APREPRO-format parameters file example is shown in Section 11.6.

The use of the APREPRO format option allows direct usage of these parameters files by the APREPRO util-
ity, which is a file pre-processor that can significantly simplify model parameterization. Similar pre-processors
include DPrePro, BPREPRO, and JPrePost. [Note: APREPRO is a Sandia-developed pre-processor that is not
currently distributed with Dakota. DPrePro is a Perl script distributed with Dakota that performs many of the
same functions as APREPRO, and is optimized for use with Dakota parameters files in either format. BPREPRO
and JPrePost are additional Perl and JAVA tools, respectively, in use at other sites.] When a parameters file in
APREPRO format is included within a template file (using an include directive), the APREPRO utility recog-
nizes these constructs as variable definitions which can then be used to populate targets throughout the template
file [106]. DPrePro, conversely, does not require the use of includes since it processes the Dakota parameters file
and template simulation file separately to create a simulation input file populated with the variables data.
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{ DAKOTA_VARS = <int> }

{ <label_cdv;> = <double> } (1 =1 to nedw)

{ <label_ddiv;> = <int> } (1 = 1 to nggiv)

{ <label_ddrv;> = <double> } (i = 1 to nggre)

{ <label_cauv;> = <double> } (i = 1 to nequw)

{ <label_dauiv;> = <int> } (1 = 1 to Ndawiv)

{ <label_daurv;> = <double> } (i = 1 to nggury)

{ <label_ceuv;> = <double> } (1 =1 to Neews)

{ <label_deuiv;> = <int> } (1 = 1 to Nngewiv)

{ <label_deurv;> = <double> } (1 = 1 to Ngeurv)

{ <label_csv;> = <double> } (1 = 1 to negy)

{ <label_dsiv;> = <int> } (1 = 1 to ngsiv)

{ <label_dsrv;> = <double> } (1 = 1 to ngsm)

{ DAKOTA_FNS = <int> }

{ ASV_i:label_response; = <int> } (i =1 to m)
{ DAKOTA_DER_VARS = <int> }

{ DVV_i:label_cdv; = <int> } (1 =1 to p)

Figure 10.2: Parameters file data format - APREPRO option.

10.7 The Active Set Vector

The active set vector contains a set of integer codes, one per response function, which describe the data needed
on a particular execution of an interface. Integer values of 0 through 7 denote a 3-bit binary representation of all
possible combinations of value, gradient, and Hessian requests for a particular function, with the most significant
bit denoting the Hessian, the middle bit denoting the gradient, and the least significant bit denoting the value. The
specific translations are shown in Table 10.1.

The active set vector in Dakota gets its name from managing the active set, i.e., the set of functions that are active
on a particular function evaluation. However, it also manages the type of data that is needed for functions that are
active, and in that sense, has an extended meaning beyond that typically used in the optimization literature.

Table 10.1: Active set vector integer codes.

Integer Code | Binary representation | Meaning
7 111 Get Hessian, gradient, and value
6 110 Get Hessian and gradient
5 101 Get Hessian and value
4 100 Get Hessian
3 011 Get gradient and value
2 010 Get gradient
1 001 Get value
0 000 No data required, function is inactive
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10.7.1 Active set vector control

Active set vector control may be turned off to allow the user to simplify the supplied interface by removing

the need to check the content of the active set vector on each evaluation. The Interface Commands chapter in the
Dakota Reference Manual [3] provides additional information on this option (deactivate active_set_vector).
Of course, this option trades some efficiency for simplicity and is most appropriate for those cases in which only

a relatively small penalty occurs when computing and returning more data than may be needed on a particular
function evaluation.
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Interfaces

11.1 Overview

The interface specification in a Dakota input file controls details of function evaluations. The mechanisms
currently in place for function evaluations involve interfacing with one or more computational simulation codes,
computing algebraic mappings, or a combination of the two.

This chapter will describe algebraic mappings in Section 11.2, followed by discussion of a variety of mechanisms
for simulation code invocation in Section 11.3. This chapter also provides an overview of simulation interface
components, covers issues relating to file management and presents a number of example data mappings.

For a detailed description of interface specification syntax, refer to the interface commands chapter in the Dakota
Reference Manual [3].

11.2 Algebraic Mappings

If desired, one can define algebraic input-output mappings using the AMPL code [38] and save these mappings
in 3 files: stub.nl, stub.col, and stub. row, where stub is a particular root name describing a particular
problem. These files names can be communicated to Dakota using the algebraic mappings input.

Dakota will use stub.col and stub.row to obtain input and output identifier strings, respectively, and will
use the AMPL solver library [41] to evaluate expressions conveyed in stub.nl, and, if needed, their first and
second derivatives.

As a simple example (from Dakota/test/dakota_ampl«), consider algebraic mappings based on Newton’s
law F' = ma. The following is an AMPL input file of variable and expression declarations and output commands:

var mass;
var aj;

var vj

minimize force: massx*a;

minimize energy: 0.5 % mass * v 2;

option auxfiles rc; # request stub.row and stub.col
write gfma; # write stub.nl, stub.row, stub.col
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When processed by an AMPL processor, three files are created (as requested by the “option auxfiles” command).
The first is the dakota_ampl_fma.nl file containing problem statistics, expression graphs, bounds, etc.:
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0
0

0

# problem fma

# vars,

constraints,

objectives,

ranges,

eqns

# nonlinear constraints,
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objectives
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objectives,
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# linear network variables;

# discrete variables:
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# nonzeros in Jacobian,

gradients

functions;
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arith,
nonlinear

flags
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Next, the dakota_ampl_fma.col file contains the set of variable descriptor strings:

mass

and the dakota_ampl_fma . row file contains the set of response descriptor strings:

force
energy
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The variable and objective function names declared within AMPL should be a subset of the variable descriptors

and response descriptors used by Dakota (see the Dakota Reference Manual [3] for information on Dakota variable

and response descriptors). Ordering of the inputs and outputs within the AMPL declaration is not important, as

Dakota will reorder data as needed. The following listing shows an excerpt from Dakota/test/dakota_ampl_fma.in,
which demonstrates a combined algebraic/simulation-based mapping in which algebraic mappings from the fma

definition are overlaid with simulation-based mappings from text book:

variables,

continuous_design = 5
descriptor "x1’ ’'mass’ "a’ ’'x4’ 'v’
initial_point 0.0 2.0 1.0 0.0 3.0
lower_bounds -3.0 0.0 -5.0 -3.0 =-5.0
upper_bounds 3.0 10.0 5.0 3.0 5.0

interface,

algebraic_mappings
system

"dakota_ampl_fma.nl’

analysis_driver
parameters_file
results_file

"text_book’
"tbh.in’
"tb.out’

file_tag

responses,
response_descriptors = ' force’
num_objective_functions 1
num_nonlinear_inequality_constraints
num_nonlinear_equality_constraints
20.0

"ineqgl’ ’energy’

=1
1

nonlinear_equality_targets
analytic_gradients
no_hessians

Note that the algebraic inputs and outputs are a subset of the total inputs and outputs and that Dakota will track
the algebraic contributions to the total response set using the order of the descriptor strings. In the case where
both the algebraic and simulation-based components contribute to the same function, they are added together.

To solve text_book algebraically (refer to Section 21.1 for definition), the following AMPL model file could
be used
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# Problem : Textbook problem used in DAKOTA testing

# Constrained quartic, 2 continuous variables
# Solution: x=(0.5, 0.5), obj = .125, cl = 0, c2 =0

#

# continuous variables
var x1 >= 0.5 <= 5.8 := 0.9;
var x2 >= -2.9 <= 2.9 := 1.1;

# objective function
minimize obj: (x1 - 1)74 + (x2 - 1)74;

# constraints (current required syntax for DAKOTA/AMPL interface)
minimize cl: x1°2 - 0.5%xx2;
minimize c2: x2°2 - 0.5%x1;

# required for output of x.row and x.col files
option auxfiles rc;

Note that the nonlinear constraints should not currently be declared as constraints within AMPL. Since the Dakota
variable bounds and constraint bounds/targets currently take precedence over any AMPL specification, the current
approach is to declare all AMPL outputs as objective functions and then map them into the appropriate response
function type (objectives, least squares terms, nonlinear inequality/equality constraints, or generic response func-
tions) within the Dakota input specification.

11.3 Simulation Interfaces

The invocation of a simulation code is performed using either system calls, forks, or direct function invocations.
In the system call and fork cases, a separate process is created for the simulation and communication between
Dakota and the simulation occurs through parameter and response files. For system call and fork interfaces, the
interface section must specify the details of this data transfer. In the direct function case, a separate process is
not created and communication occurs directly through the function argument list. Sections 11.3.1 through 11.3.5
provide information on the simulation interfacing approaches.

11.3.1 The Direct Function Simulation Interface

The direct function interface may be used to invoke simulations that are linked into the Dakota executable. This
interface eliminates overhead from process creation and file I/O and can simplify operations on massively parallel
computers. These advantages are balanced with the practicality of converting an existing simulation code into a
library with a subroutine interface. Sandia codes for structural dynamics (Salinas), computational fluid dynamics
(Sage), and circuit simulation (Xyce) and external codes such as Phoenix Integration’s ModelCenter framework
and The Mathworks’ Matlab have been linked in this way, and a direct interface to Sandia’s SIERRA multiphysics
framework is under development. In the latter case, the additional effort is particularly justified since SIERRA
unifies an entire suite of physics codes. [Note: the “sandwich implementation” of combining a direct interface
plug-in with Dakota’s library mode is discussed in the Dakota Developers Manual [ ]].

In addition to direct linking with simulation codes, the direct interface also provides access to internal polyno-
mial test functions that are used for algorithm performance and regression testing. The following test functions
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are available: cantilever, cyl_head, log_.ratio, rosenbrock, short_column, and text _book (in-
cluding text bookl, text_book2, text book3, and text_book_ouu). While these functions are also
available as external programs in the Dakota/test directory, maintaining internally linked versions allows
more rapid testing. See Chapter 21 for additional information on several of these test problems. An example input
specification for a direct interface follows:

interface,
direct
analysis_driver = ’rosenbrock’

Additional specification examples are provided in Section 2.3 and additional information on asynchronous usage
of the direct function interface is provided in Section 18.2.1.1. Guidance for usage of some particular direct
simulation interfaces is in Section 17.3 and the details of adding a simulation code to the direct interface are
provided in Section 17.2.

11.3.2 The System Call Simulation Interface

Users are strongly encouraged to use the fork simulation interface if possible, though the system interface
is still supported for portability and backward compatibility. The system call approach invokes a simulation
code or simulation driver by using the system function from the standard C library [76]. In this approach, the
system call creates a new process that communicates with Dakota through parameter and response files. The
system call approach allows the simulation to be initiated via its standard invocation procedure (as a “black box™)
and then coordinated with a variety of tools for pre- and post-processing. This approach has been widely used
in previous studies [30, 32, 24]. The system call approach involves more process creation and file I/O overhead
than the direct function approach, but this extra overhead is usually insignificant compared with the cost of a
simulation. An example of a system call interface specification follows:

interface,
system
analysis_driver = ’text_book’
parameters_file = ’'text_book.in’
results_file = ’"text_book.out’

file_tag file_save

Information on asynchronous usage of the system interface is provided in Section 18.2.1.2.

11.3.3 The Fork Simulation Interface

The fork simulation interface uses the fork, exec, and wait families of functions to manage simulation
codes or simulation drivers. (In a native MS Windows version of Dakota, similar Win32 functions, such as
_spawnvp (), are used instead.) Calls to fork or vfork create a copy of the Dakota process, execvp replaces
this copy with the simulation code or driver process, and then Dakota uses the wait or waitpid functions to
wait for completion of the new process. Transfer of variables and response data between Dakota and the simula-
tor code or driver occurs through the file system in exactly the same manner as for the system call interface. An
example of a fork interface specification follows:

interface,

fork
input_filter = ’"test_3pc_if’
output_filter = ’"test_3pc_of’
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analysis_driver = ’test_3pc_ac’
parameters_file = 'tb.in’
results_file = "tb.out’
file_tag

More detailed examples of using the fork call interface are provided in Section 2.3.5.1 and in Section 17.1, and
information on asynchronous usage of the fork call interface is provided in Section 18.2.1.3.

11.3.4 Syntax for Filter and Driver Strings

With the fork interface, and on most systems, with the system interface as well, the string values supplied
for input_filter, output_filter, and analysis_driver can involve simple Bourne-shell syntax for
specifying environment values that the filter or driver will see. For example,

analysis_driver = ’'opfile=myspec outlev=2 mydriver’

would cause mydriver to be invoked with environment variables opfile and outlev having the values
“myspec” and “2”, respectively. If the driver is a shell script, it can access these values as $Sopfile and
Soutlev; a compiled driver can obtain these values from a function; drivers written in C or C++ can use the
standard getenv function (e.g., invoking getenv ("opfile")).

Both the values assigned to environment variables and name of the file invoked as filter or driver can contain
spaces, provided that the values in question are quoted. Within strings delimited by single quotes, you can use
double quotes for quoting, and vice versa. For instance,

analysis_driver = 'opfile="my spec" "my driver"’

and

analysis_driver = "opfile='my spec’ ’'my driver’"

both specify a driver named “my driver” and value “my spec” for Sopfile.

11.3.5 Fork or System Call: Which to Use?

The primary operational difference between the fork and system call simulation interfaces is that, in the fork in-
terface, the fork/exec functions return a process identifier that the wait/waitpid functions can use to detect
the completion of a simulation for either synchronous or asynchronous operations. The system call simulation
interface, on the other hand, must use a response file detection scheme for this purpose in the asynchronous case.
Thus, an important advantage of the fork interface over the system call interface is that it avoids the potential of a
file race condition when employing asynchronous local parallelism (refer to Section 18.2.1). This condition can
occur when the responses file has been created but the writing of the response data set to this file has not been
completed (see Section 18.2.1.2). While significant care has been taken to manage this file race condition in the
system call case, the fork interface still has the potential to be more robust when performing function evaluations
asynchronously.

Another advantage of the fork interface is that it has additional asynchronous capabilities when a function eval-
uation involves multiple analyses. As shown in Table 18.1, the fork interface supports asynchronous local and
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hybrid parallelism modes for managing concurrent analyses within function evaluations, whereas the system call
interface does not. These additional capabilities again stem from the ability to track child processes by their
process identifiers.

The only disadvantage to the fork interface compared with the system interface is that the fork/exec/wait
functions are not part of the standard C library, whereas the system function is. As a result, support for imple-
mentations of the fork/exec/wait functions can vary from platform to platform. At one time, these commands
were not available on some of Sandia’s massively parallel computers. However, in the more mainstream UNIX
environments, availability of fork/exec/wait should not be an issue.

In summary, the system call interface has been a workhorse for many years and is well tested and proven, but
the fork interface supports additional capabilities and is recommended when managing asynchronous simulation
code executions. Having both interfaces available has proven to be useful on a number of occasions and they will
both continue to be supported for the foreseeable future.

11.4 Simulation Interface Components

Figure 11.1 is an extension of Figure 1.1 that adds details of the components that make up each of the simulation
interfaces (system call, fork, and direct). These components include an input_filter (“IFilter”), one or
more analysis_drivers (“Analysis Code/Driver”), and an output_filter (“OFilter”). The input and
output filters provide optional facilities for managing simulation pre- and post-processing, respectively. More
specifically, the input filter can be used to insert the Dakota parameters into the input files required by the simulator
program, and the output filter can be used to recover the raw data from the simulation results and compute the
desired response data set. If there is a single analysis code, it is often convenient to combine these pre- and post-
processing functions into a single simulation driver script, and the separate input and output filter facilities are
rarely used in this case. If there are multiple analysis drivers, however, the input and output filter facilities provide
a convenient means for managing non-repeated portions of the pre- and post-processing for multiple analyses.
That is, pre- and post-processing tasks that must be performed for each analysis can be performed within the
individual analysis drivers, and shared pre- and post-processing tasks that are only performed once for the set of
analyses can be performed within the input and output filters.

When spawning function evaluations using system calls or forks, Dakota must communicate parameter and re-
sponse data with the analysis drivers and filters through use of the file system. This is accomplished by passing
the names of the parameters and results files on the command line when executing an analysis driver or filter.
The input filter or analysis driver read data from the parameters file and the output filter or analysis driver write
the appropriate data to the responses file. While not essential when the file names are fixed, the file names must
be retrieved from the command line when Dakota is changing the file names from one function evaluation to the
next (i.e., using temporary files or root names tagged with numerical identifiers). In the case of a UNIX C-shell
script, the two command line arguments are retrieved using $argv[1] and Sargv[2] (see [5]). Similarly,
Bourne shell scripts retrieve the two command line arguments using $1 and $2, and Perl scripts retrieve the two
command line arguments using @ARGV [0] and @ARGV [1]. In the case of a C or C++ program, command line
arguments are retrieved using argc (argument count) and argv (argument vector) [76], and for Fortran 77, the
iargc function returns the argument count and the get arg subroutine returns command line arguments.

11.4.1 Single analysis driver without filters

If a single analysis_driver is selected in the interface specification and filters are not needed (as indicated
by omission of the input_filter and output_filter specifications), then only one process will appear in
the execution syntax of the simulation interface. An example of this syntax in the system call case is:
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Figure 11.1: Components of the simulation interface

driver params.in results.out

where “driver” is the user-specified analysis driver and “params.in” and “results.out” are the names
of the parameters and results files, respectively, passed on the command line. In this case, the user need not
retrieve the command line arguments since the same file names will be used each time.

For the same mapping, the fork simulation interface echoes the following syntax:
blocking fork: driver params.in results.out

for which only a single blocking fork is needed to perform the evaluation.

Executing the same mapping with the direct simulation interface results in an echo of the following syntax:
Direct function: invoking driver
where this analysis driver must be linked as a function within Dakota’s direct interface (see Section 17.2). Note

that no parameter or response files are involved, since such values are passed directly through the function argu-
ment lists.

Both the system call and fork interfaces support asynchronous operations. The asynchronous system call execu-
tion syntax involves executing the system call in the background:

driver params.in.l results.out.l &
and the asynchronous fork execution syntax involves use of a nonblocking fork:
nonblocking fork: driver params.in.l results.out.l

where file tagging (see Section 11.5.2) has been user-specified in both cases to prevent conflicts between con-
current analysis drivers. In these cases, the user must retrieve the command line arguments since the file names
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change on each evaluation. Execution of the direct interface must currently be performed synchronously since
multithreading is not yet supported (see Section 18.2.1.1).

11.4.2 Single analysis driver with filters

When filters are used, the syntax of the system call that Dakota performs is:

ifilter params.in results.out; driver params.in results.out;
ofilter params.in results.out

in which the input filter (“ifilter”), analysis driver (“driver”), and output filter (“ofilter”) processes
are combined into a single system call through the use of semi-colons (see [5]). All three portions are passed the
names of the parameters and results files on the command line.

For the same mapping, the fork simulation interface echoes the following syntax:

blocking fork: ifilter params.in results.out;
driver params.in results.out; ofilter params.in results.out

where a series of three blocking forks is used to perform the evaluation.

Executing the same mapping with the direct simulation interface results in an echo of the following syntax:
Direct function: invoking { ifilter driver ofilter }

where each of the three components must be linked as a function within Dakota’s direct interface. Since asyn-
chronous operations are not yet supported, execution simply involves invocation of each of the three linked func-
tions in succession. Again, no files are involved since parameter and response data are passed directly through the
function argument lists.

Asynchronous executions would appear as follows for the system call interface:

(ifilter params.in.l results.out.l; driver params.in.l results.out.l;
ofilter params.in.l results.out.l) &

and, for the fork interface, as:

nonblocking fork: ifilter params.in.l results.out.l;
driver params.in.l results.out.l; ofilter params.in.l results.out.l

where file tagging of evaluations has again been user-specified in both cases. For the system call simulation
interface, use of parentheses and semi-colons to bind the three processes into a single system call simplifies
asynchronous process management compared to an approach using separate system calls. The fork simulation
interface, on the other hand, does not rely on parentheses and accomplishes asynchronous operations by first
forking an intermediate process. This intermediate process is then reforked for the execution of the input filter,
analysis driver, and output filter. The intermediate process can be blocking or nonblocking (nonblocking in this
case), and the second level of forks can be blocking or nonblocking (blocking in this case). The fact that forks
can be reforked multiple times using either blocking or nonblocking approaches provides the enhanced flexibility
to support a variety of local parallelism approaches (see Chapter 18).

Dakota Version 5.3 User’s Manual generated on February 13, 2013



182 CHAPTER 11. INTERFACES

11.4.3 Multiple analysis drivers without filters

If a list of analysis._drivers is specified and filters are not needed (i.e., neither input_filter nor
output_filter appears), then the system call syntax would appear as:

driverl params.in results.out.l; driver2 params.in results.out.2;
driver3 params.in results.out.3

T3

where “driverl”, “driver2”, and “driver3” are the user-specified analysis drivers and “params.in”
and “results.out” are the user-selected names of the parameters and results files. Note that the results files
for the different analysis drivers have been automatically tagged to prevent overwriting. This automatic tagging of
analyses (see Section 11.5.4) is a separate operation from user-selected tagging of evaluations (see Section 11.5.2).

For the same mapping, the fork simulation interface echoes the following syntax:

blocking fork: driverl params.in results.out.l;
driver2 params.in results.out.2; driver3 params.in results.out.3

for which a series of three blocking forks is needed (no reforking of an intermediate process is required).

Executing the same mapping with the direct simulation interface results in an echo of the following syntax:
Direct function: invoking { driverl driver2 driver3 }

where, again, each of these components must be linked within Dakota’s direct interface and no files are involved
for parameter and response data transfer.

Both the system call and fork interfaces support asynchronous function evaluations. The asynchronous system
call execution syntax would be reported as

(driverl params.in.l results.out.l.l; driver2 params.in.l results.out.l.2;
driver3 params.in.l results.out.l1.3) &

and the nonblocking fork execution syntax would be reported as

nonblocking fork: driverl params.in.l results.out.l.1l;
driver2 params.in.l results.out.l.2; driver3 params.in.l results.out.1l.3

where, in both cases, file tagging of evaluations has been user-specified to prevent conflicts between concurrent
analysis drivers and file tagging of the results files for multiple analyses is automatically used. In the fork interface
case, an intermediate process is forked to allow a non-blocking function evaluation, and this intermediate process
is then reforked for the execution of each of the analysis drivers.

11.4.4 Multiple analysis drivers with filters

Finally, when combining filters with multiple analysis_drivers, the syntax of the system call that Dakota
performs is:

ifilter params.in.l results.out.l;

driverl params.in.l results.out.l.1l;
driver2 params.in.l results.out.l1l.2;
driver3 params.in.l results.out.l1l.3;
ofilter params.in.l results.out.l
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in which all processes have again been combined into a single system call through the use of semi-colons and
parentheses. Note that the secondary file tagging for the results files is only used for the analysis drivers and
not for the filters. This is consistent with the filters’ defined purpose of managing the non-repeated portions of
analysis pre- and post-processing (e.g., overlay of response results from individual analyses; see Section 11.5.4
for additional information).

For the same mapping, the fork simulation interface echoes the following syntax:
blocking fork: ifilter params.in.l results.out.l;
driverl params.in.l results.out.l.1;
driver2 params.in.l results.out.l1l.2;
driver3 params.in.l results.out.l.3;
ofilter params.in.l results.out.l

for which a series of five blocking forks is used (no reforking of an intermediate process is required).

Executing the same mapping with the direct simulation interface results in an echo of the following syntax:
Direct function: invoking { ifilter driverl driver2 driver3 ofilter }

where each of these components must be linked as a function within Dakota’s direct interface. Since asynchronous
operations are not supported, execution simply involves invocation of each of the five linked functions in succes-
sion. Again, no files are involved for parameter and response data transfer since this data is passed directly through
the function argument lists.

Asynchronous executions would appear as follows for the system call interface:

(ifilter params.in.l results.out.l;

driverl params.in.l results.out.l.1l;
driver2 params.in.l results.out.l.2;
driver3 params.in.l results.out.l1l.3;
ofilter params.in.l results.out.l) &

and for the fork interface:

nonblocking fork: ifilter params.in.l results.out.l;
driverl params.in.l results.out.
driver2 params.in.l results.out.
driver3 params.in.l results.out.
ofilter params.in.l results.out.

w N =
~e o~

~

e e

where, again, user-selected file tagging of evaluations is combined with automatic file tagging of analyses. In
the fork interface case, an intermediate process is forked to allow a non-blocking function evaluation, and this
intermediate process is then reforked for the execution of the input filter, each of the analysis drivers, and the
output filter.

A complete example of these filters and multi-part drivers can be found in Dakota/test/dakota_3pc/dakota_3pc.in.

11.5 Simulation File Management

This section describes some management features used for files that transfer data between Dakota and simulation
codes (i.e., when the system call or fork interfaces are used). These features can generate unique filenames when
Dakota executes programs in parallel and can help one debug the interface between Dakota and a simulation code.
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11.5.1 File Saving

Before driver execution: In Dakota 5.0 and newer, an existing results file will be removed immediately prior to
executing the analysis driver. This new behavior addresses a common user problem resulting from starting Dakota
with stale results files in the run directory. To override this default behavior and preserve any existing results files,
specify allow_existing_results.

After driver execution: The £ile_save option in the interface specification allows the user to control whether
parameters and results files are retained or removed from the working directory after the analysis completes.
Dakota’s default behavior is to remove files once their use is complete to reduce clutter. If the method output
setting is verbose, a file remove notification will follow the function evaluation echo, e.g.,

driver /usr/tmp/aaaa20305 /usr/tmp/baaa20305
Removing /usr/tmp/aaaa20305 and /usr/tmp/baaa20305

However, if file_save appears in the interface specification, these files will not be removed. This latter be-
havior is often useful for debugging communication between Dakota and simulator programs. An example of a
file_save specification is shown in the file tagging example below.

11.5.2 File Tagging for Evaluations

When a user provides parameters_file and results_file specifications, the file_tag option in the
interface specification causes Dakota to make the names of these files unique by appending the function evaluation
number to the root file names. Default behavior is to not tag these files, which has the advantage of allowing the
user to ignore command line argument passing and always read to and write from the same file names. However,
it has the disadvantage that files may be overwritten from one function evaluation to the next. When file_tag
appears in the interface specification, the file names are made unique by the appended evaluation number. This
uniqueness requires the user’s interface to get the names of these files from the command line. The file tagging
feature is most often used when concurrent simulations are running in a common disk space, since it can prevent
conflicts between the simulations. An example specification of file_tagand file_save is shown below:

interface,
system
analysis_driver = ’text_book’
parameters_file = ’'text_book.in’
results_file = ’text_book.out’

file_tag file_save

Special case: When a user specifies names for the parameters and results files and file_save is used without
file_tag, untagged files are used in the function evaluation but are then moved to tagged files after the function
evaluation is complete, to prevent overwriting files for which a £ile_save request has been given. If the output
control is set to verbose, then a notification similar to the following will follow the function evaluation echo:

driver params.in results.out

Files with non-unique names will be tagged to enable file_save:
Moving params.in to params.in.l

Moving results.out to results.out.l

11.5.3 Temporary Files

If parameters_file and results_file are not specified by the user, temporary files having generated
names are used. For example, a system call to a single analysis driver might appear as:
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driver /usr/tmp/aaaa20305 /usr/tmp/baaa20305
and a system call to an analysis driver with filter programs might appear as:

ifilter /usr/tmp/aaaa22490 usr/tmp/baaa22490;
driver /usr/tmp/aaaa22490 usr/tmp/baaa22490;
ofilter /usr/tmp/aaaa22490 /usr/tmp/baaa22490

These files have unique names created by the tmpnam utility from the C standard library [76]. This uniqueness
requires the user’s interface to get the names of these files from the command line. File tagging with evaluation
number is unnecessary with temporary files (since they are already unique); thus, £ile_tag requests will be
ignored. A file_save request will be honored, but it should be used with care since the temporary file directory
could easily become cluttered without the user noticing.

11.5.4 File Tagging for Analysis Drivers

When multiple analysis drivers are involved in performing a function evaluation with either the system call or
fork simulation interface, a secondary file tagging is automatically used to distinguish the results files used for
the individual analyses. This applies to both the case of user-specified names for the parameters and results files
and the default temporary file case. Examples for the former case were shown previously in Section 11.4.3 and
Section 11.4.4. The following examples demonstrate the latter temporary file case. Even though Unix temporary
files have unique names for a particular function evaluation, tagging is still needed to manage the individual
contributions of the different analysis drivers to the response results, since the same root results filename is used
for each component. For the system call interface, the syntax would be similar to the following:

ifilter /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ;
driverl /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ.1;
driver2 /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ.2;
driver3 /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZz.3;
ofilter /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ

and, for the fork interface, similar to:

blocking fork:
ifilter /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ;
driverl /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKzZ.l1l;
driver2 /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZz.2;
driver3 /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ.3;
ofilter /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ

Tagging of results files with an analysis identifier is needed since each analysis driver must contribute a user-
defined subset of the total response results for the evaluation. If an output filter is not supplied, Dakota will
combine these portions through a simple overlaying of the individual contributions (i.e., summing the results in
/var/tmp/baaxkaOKZ.1, /var/tmp/baaxkaOKZ. 2, and /var/tmp/baaxkaOKZ. 3). If this simple
approach is inadequate, then an output filter should be supplied to perform the combination. This is the reason
why the results file for the output filter does not use analysis tagging; it is responsible for the results combination
(i.e., combining /var/tmp/baaxkaOKZ.1, /var/tmp/baaxkaOKZ.2,and /var/tmp/baaxkaOKZz. 3
into /var/tmp/baaxkaOKz). In this case, Dakota will read only the results file from the output filter (i.e.,
/var/tmp/baaxkaOKZz) and interpret it as the total response set for the evaluation.
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Parameters files are not currently tagged with an analysis identifier. This reflects the fact that Dakota does not
attempt to subdivide the requests in the active set vector for different analysis portions. Rather, the total active set
vector is passed to each analysis driver and the appropriate subdivision of work must be defined by the user. This
allows the division of labor to be very flexible. In some cases, this division might occur across response functions,
with different analysis drivers managing the data requests for different response functions. And in other cases, the
subdivision might occur within response functions, with different analysis drivers contributing portions to each of
the response functions. The only restriction is that each of the analysis drivers must follow the response format
dictated by the total active set vector. For response data for which an analysis driver has no contribution, 0’s must
be used as placeholders.

11.5.5 Work Directories

Sometimes it is convenient for simulators and filters to run in a directory different from the one where Dakota is
invoked. For instance, when performing concurrent evaluations and/or analyses, it is often necessary to cloister
input and output files in separate directories to avoid conflicts. A simulator script used as an analysis_driver
can of course include commands to change to a different directory if desired (while still arranging to write a results
file in the original directory), but Dakota has facilities that may simplify the creation of simulator scripts. When the
work_directory feature is enabled, Dakota will create a directory for each evaluation/analysis (with optional
tagging and saving as with files). To enable the work_directory feature an interface specification includes the
keyword

work_directory

then Dakota will arrange for the simulator and any filters to wake up in the work directory, with $PATH adjusted
(if necessary) so programs that could be invoked without a relative path to them (i.e., by a name not involving any
slashes) from Dakota’s directory can also be invoked from the simulator’s (and filter’s) directory. On occasion, it
is convenient for the simulator to have various files, e.g., data files, available in the directory where it runs. If, say,
my/special/directory is such a directory (as seen from Dakota’s directory), the interface specification

work_directory named ’'my/special/directory’

would cause Dakota to start the simulator and any filters in that directory. If the directory did not already exist,
Dakota would create it and would remove it after the simulator (or output filter, if specifed) finished, unless
instructed not to do so by the appearance of directory_save or its synonym dir_save in the interface
specification. If named ’...” does not appear, then directory_save cannot appear either, and Dakota creates
a temporary directory (using the t mpnam function to determine its name) for use by the simulator and any filters.
If you specify directory_-tag (or dir_tag), Dakota causes each invocation of the simulator and any filters
to start in a a subdirectory of the work directory with a name composed of the work directory’s name followed by
a period and the invocation number (1, 2, ...); this might be useful in debugging.

Sometimes it can be helpful for the simulator and filters to start in a new directory populated with some files.
Adding

template_directory 'my/template’

to the work directory specification would cause the contents of directory my/template to be linked recursively
into the work directory. Linking makes sense if files are large, but when practical, it is far more reliable to have
copies of the files; adding copy to the specification would cause the contents of the template directory to be
copied recursively to the work directory. The linking or copying does not replace existing files unless replace
also appears in the specification. Instead of template_directory ..., you can specify template_files,
followed by one or more quoted strings, as in
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template_files ’zip’ ’zap’ ’'foo/zot’

which would cause zip, zap, and foo/zot to be linked (or, with copy, copied) recursively to the work
directory.

Here is a summary of possibilities for a work directory specification, with [...] denoting that ... is optional:

work_directory [ named '...’ ]
[ directory_tag ] # or dir_tag
[ directory_save ] # or dir_save
[ template_directory ’...’ # or template_files ’'..." ...’
[ copy 1
[ replace ]

]

11.6 Parameter to Response Mappings

In this section, interface mapping examples are presented through the discussion of several parameters files and
their corresponding results files. A typical input file for 2 variables (n = 2) and 3 functions (m = 3) using the
standard parameters file format (see Section 10.6.1) is as follows:

2 variables
1.500000000000000e4+00 cdv_1
1.500000000000000e+00 cdv_2

3 functions
ASV_1
ASV_2
ASV_3
derivative_variables
DVV_1
DVV_2
analysis_components

ON RN

where numerical values are associated with their tags within “value tag” constructs. The number of design
variables (n) and the string “variables” are followed by the values of the design variables and their tags, the
number of functions (m) and the string “functions”, the active set vector (ASV) and its tags, the number of
derivative variables and the string “derivative_variables”, the derivative variables vector (DVV) and its
tags, the number of analysis components and the string “analysis_components”, and the analysis compo-
nents array and its tags. The descriptive tags for the variables are always present and they are either the descriptors
in the user’s variables specification, if given there, or are default descriptors. The length of the active set vector is
equal to the number of functions (m). In the case of an optimization data set with an objective function and two
nonlinear constraints (three response functions total), the first ASV value is associated with the objective function
and the remaining two are associated with the constraints (in whatever consistent constraint order has been defined
by the user). The DVV defines a subset of the variables used for computing derivatives. Its identifiers are 1-based
and correspond to the full set of variables listed in the first array. Finally, the analysis components pass additional
strings from the user’s analysis_components specification in a Dakota input file through to the simulator.
They allow the development of simulation drivers that are more flexible, by allowing them to be passed additional
specifics at run time, e.g., the names of model files such as a particular mesh to use.

For the APREPRO format option (see Section 10.6.2), the same set of data appears as follows:
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DAKOTA_VARS =
cdv_1 =
cdv_2 =
DAKOTA_FNS =
ASV_1 =
ASV_2 =
ASV_3 =
DAKOTA_DER_VARS =
DVV_1 =
DVV_2 =
DAKOTA_AN_COMPS =

B T e e e T

where the numerical values are associated with their tags within “{ tag

2
1.500000000000000e+00
1.500000000000000e+00

3

oM N

value }” constructs.

The user-supplied simulation interface, comprised of a simulator program or driver and (optionally) filter pro-
grams, is responsible for reading the parameters file and creating a results file that contains the response data
requested in the ASV. This response data is written in the format described in Section 12.2. Since the ASV con-
tains all ones in this case, the response file corresponding to the above input file would contain values for the three

functions:

1.250000000000000e-01
1.500000000000000e+00
1.500000000000000e+00

Since function tags are optional, the following would be equally acceptable:

1.250000000000000e-01
1.500000000000000e+00
1.500000000000000e+00

f
cl
c2

For the same parameters with different ASV components,

2
1.500000000000000e+00
1.500000000000000e+00

3

O N E DN WWW

variables

cdv_1

cdv_2

functions

ASV_1

ASV_2

ASV_3
derivative_variables
DVV_1

DVV_2
analysis_components

the following response data is required:

.250000000000000e-01
.500000000000000e+00
.500000000000000e+00

—_—— e

f
cl
c2

5.000000000000000e-01 5.000000000000000e-01
3.000000000000000e+00 -5.000000000000000e-01
-5.000000000000000e-01 3.000000000000000e+00

]
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Here, we need not only the function values, but also each of their gradients. The derivatives are computed with
respect to cdv_1 and cdv_2 as indicated by the DVV values. Another modification to the ASV components
yields the following parameters file:

2 variables
1.500000000000000e+00 cdv_1
1.500000000000000e+00 cdv_2

3 functions
ASV_1
ASV_2
ASV_3
derivative_variables
DVV_1
DVV_2
analysis_components

ONE NDNDODN

for which the following results file is needed:

[ 5.000000000000000e-01 5.000000000000000e-01 ]
[ -5.000000000000000e-01 3.000000000000000e+00 ]

Here, we need gradients for functions £ and c2, but not for c1, presumably since this constraint is inactive.

A full Newton optimizer might make the following request:

2 variables
1.500000000000000e+00 cdv_1
1.500000000000000e+00 cdv_2

1 functions
ASV_1
derivative_variables
DVV_1
DVV_2
analysis_components

O NN

for which the following results file,

1.250000000000000e-01 £

[ 5.000000000000000e-01 5.000000000000000e-01 1]

[[ 3.000000000000000e+00 0.000000000000000e+00
0.000000000000000e+00 3.000000000000000e+00 11

containing the objective function, its gradient vector, and its Hessian matrix, is needed. Again, the derivatives
(gradient vector and Hessian matrix) are computed with respect to cdv_1 and cdv_2 as indicated by the DVV
values.

Lastly, a more advanced example could have multiple types of variables present; in this example, 2 continuous
design and 3 discrete design range, 2 normal uncertain, and 3 continuous state and 2 discrete state range variables.
When a mixture of variable types is present, the content of the DVV (and therefore the required length of gradient
vectors and Hessian matrices) depends upon the type of study being performed (see Section 12.3). For a reliability
analysis problem, the uncertain variables are the active continuous variables and the following parameters file
would be typical:
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12
1.500000000000000e+00
1.500000000000000e+00

2
2
2
.000000000000000e+00
.000000000000000e+00
.500000000000000e+00
.500000000000000e+00
.500000000000000e+00
4

w w w o,

N 0D Wwwwwb>

meshl.exo
dbl.xml

variables
cdv_1
cdv_2
ddriv_1
ddriv_2
ddriv_3
nuv_1
nuv_2
csv_1
csv_2
csv_3
dsriv_1
dsriv_2
functions
ASV_1
ASV_2
ASV_3

derivative_variables

DVV_1
DVV_2

analysis_components

AC_1
AC_2

Gradients are requested with respect to variable entries 6 and 7, which correspond to normal uncertain variables
nuv_1 and nuv_2. The following response data would be appropriate:

7.943125000000000e+02
1.500000000000000e+00
1.500000000000000e+00

f
cl
c2

[ 2.560000000000000e+02 2.560000000000000e+02 ]
[ 0.000000000000000e+00 0.000000000000000e+00 ]
[ 0.000000000000000e+00 0.000000000000000e+00 1]

In a parameter study, however, no distinction is drawn between different types of continuous variables, and deriva-
tives would be needed with respect to all continuous variables (ng,, = 7 for the continuous design variables
cdv_1 and cdv_2, the normal uncertain variables nuv_1 and nuv_2, and the continuous state variables csv_1,

csv_2 and csv_3). The parameters file would appear as

12
1.500000000000000e+00
1.500000000000000e+00

2
2
2
.000000000000000e+00
.000000000000000e+00
.500000000000000e+00
.500000000000000e+00
.500000000000000e+00

4

4

3

w w w o wm

variables
cdv_1
cdv_2
ddriv_1
ddriv_2
ddriv_3
nuv_1
nuv_2
csv_1
csv_2
csv_3
dsriv_1
dsriv_2
functions
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=
N O W o Joy N EFE JWwWwWw

ASV_1
ASV_2
ASV_3
derivative_variables
DVV_1
DVV_2
DVV_3
DVV_4
DVV_5
DVV_6
DVV_7
analysis_components
meshl.exo AC_

dbl.xml AC_.

1
2

and the corresponding results would appear as

.943125000000000e+02 £
.500000000000000e+00 c1
.500000000000000e+00 c2

5.000000000000000e-01

2.560000000000000e+02
.250000000000000e+01
.000000000000000e+00
.000000000000000e+00
.000000000000000e+00
.000000000000000e-01
.000000000000000e+00
.000000000000000e+00

— g

O O U1 O O W o

.000000000000000e-01
.250000000000000e+01

.000000000000000e-01
.000000000000000e+00

.000000000000000e+00
.000000000000000e+00

.560000000000000e+02
.250000000000000e+01

.000000000000000e+00
.000000000000000e+00

.000000000000000e+00
.000000000000000e+00
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Chapter 12

Responses

12.1 Overview

The responses specification in a Dakota input file controls the types of data that can be returned from an inter-
face during Dakota’s execution. The specification includes the number and type of response functions (objective
functions, nonlinear constraints, calibration terms, etc.) as well as availability of first and second derivatives
(gradient vectors and Hessian matrices) for these response functions.

This chapter will present a brief overview of the response data sets and their uses, as well as cover some user
issues relating to file formats and derivative vector and matrix sizing. For a detailed description of responses
section syntax and example specifications, refer to the Responses Commands chapter in the Dakota Reference
Manual [3].

12.1.1 Response function types

The types of response functions listed in the responses specification should be consistent with the iterative tech-
nique called for in the method specification:

e an optimization data set comprised of num_objective_functions,
num_nonlinear_inequality_constraints,and num.nonlinear_equality_constraints.
This data set is appropriate for use with optimization methods (e.g., the methods in Chapter 6).

e a calibration data set comprised of calibration_terms,
num nonlinear_inequality_constraints,andnum nonlinear_equality_constraints.
This data set is appropriate for use with nonlinear least squares algorithms (e.g., the methods in Chapter 7).

e a generic data set comprised of num_response_functions. This data set is appropriate for use with
uncertainty quantification methods (e.g., the methods in Section 5).

Certain general-purpose iterative techniques, such as parameter studies and design of experiments methods, can
be used with any of these data sets.
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12.1.2 Gradient availability

Gradient availability for these response functions may be described by:

e no_gradients: gradients will not be used.
e numerical_gradients: gradients are needed and will be approximated by finite differences.

e analytic_gradients: gradients are needed and will be supplied by the simulation code (without any
finite differencing by Dakota).

e mixed_gradients: the simulation will supply some gradient components and Dakota will approximate
the others by finite differences.

The gradient specification also links back to the iterative method used. Gradients commonly are needed when
the iterative study involves gradient-based optimization, reliability analysis for uncertainty quantification, or local
sensitivity analysis.

12.1.3 Hessian availability

Hessian availability for the response functions is similar to the gradient availability specifications, with the addi-
tion of support for “quasi-Hessians”:

e no_hessians: Hessians will not be used.

e numerical_gradients: Hessians are needed and will be approximated by finite differences. These
finite differences may be involve first-order differences of gradients (if analytic gradients are available for
the response function of interest) or second-order differences of function values (in all other cases).

e quasi_hessians: Hessians are needed and will be approximated by secant updates (BFGS or SR1) from
a series of gradient evaluations.

e analytic_hessians: Hessians are needed and are available directly from the simulation code.

e mixed hessians: Hessians are needed and will be obtained from a mix of numerical, analytic, and
“quasi” sources.

The Hessian specification also links back to the iterative method in use; Hessians commonly would be used
in gradient-based optimization by full Newton methods or in reliability analysis with second-order limit state
approximations or second-order probability integrations.

12.2 Dakota Results File Data Format

Simulation interfaces using system calls and forks to create separate simulation processes must communicate with
the simulation through the file system. This is done by reading and writing files of parameters and results. Dakota
uses its own format for this data input/output. For the results file, only one format is supported (versus the two
parameter-file formats described in Section 10.6). Ordering of response functions is as listed in Section 12.1.1
(e.g., objective functions or calibration terms are first, followed by nonlinear inequality constraints, followed by
nonlinear equality constraints).
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<double> <fn_tag;>
<double> <fn_tags>

<double> <fn_tag,>

[ <double> <double> .. <double> ]
[ <double> <double> .. <double> ]
[ <double> <double> .. <double> ]
[[ <double> <double> .. <double> ]]
[[ <double> <double> .. <double> 1]
[[ <double> <double> .. <double> ]]

Figure 12.1: Results file data format.

After a simulation, Dakota expects to read a file containing responses reflecting the current parameters and corre-
sponding to the function requests in the active set vector. The response data must be in the format shown in Figure
12.1.

The first block of data (shown in black) conveys the requested function values and is followed by a block of
requested gradients (shown in blue), followed by a block of requested Hessians (shown in red). If the amount of
data in the file does not match the function request vector, Dakota will abort execution with an error message.

Function values have no bracket delimiters and optionally one character-string tag per function can be supplied.
These tags are not used by Dakota and are only included as an optional field for consistency with the parameters
file format and for backwards compatibility. If tags are used, they must be separated from numeric function values
by white space (one or more blanks, tabs, or newline characters) and there must not be any white space embedded
within a character-string tag (e.g., use “variablel” or “variable_1,” butnot “variable 17).

Gradient vectors are surrounded by single brackets [...ng,,-vector of doubles...]. Tags are not used and must
not be present. White space separating the brackets from the data is optional.

Hessian matrices are surrounded by double brackets [[. . . 14y, X 14y, matrix of doubles. . . ]]. Hessian components
(numeric values for second partial derivatives) are listed by rows and separated by white space; in particular, they
can be spread across multiple lines for readability. Tags are not used and must not be present. White space after
the initial double bracket and before the final one is optional, but none can appear within the double brackets.

The format of the numeric fields may be floating point or scientific notation. In the latter case, acceptable exponent
characters are “E” or “e.” A common problem when dealing with Fortran programs is that a C++ read of
a numeric field using “D” or “d” as the exponent (i.e., a double precision value from Fortran) may fail or be
truncated. In this case, the “D” exponent characters must be replaced either through modifications to the Fortran
source or compiler flags or through a separate post-processing step (e.g., using the UNIX sed utility).

12.3 Active Variables for Derivatives

An important question for proper management of both gradient and Hessian data is: if several different types of
variables are used, for which variables are response function derivatives needed? That is, how is ng,, deter-
mined? The short answer is that the derivative variables vector (DVV) specifies the set of variables to be used for
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computing derivatives, and n,,,,, is the length of this vector.

In most cases, the DVV is defined directly from the set of active continuous variables for the iterative method in
use. Since methods operate over a subset, or view, of the variables that is active in the iteration, it is this same set
of variables for which derivatives are most commonly computed. Derivatives are never needed with respect to any
discrete variables (since these derivatives do not in general exist) and the active continuous variables depend on
view override specifications, inference by response type, and inference by method type, in that order, as described
in Section 10.5.

In a few cases, derivatives are needed with respect to the inactive continuous variables. This occurs for nested
iteration where a top-level iterator sets derivative requirements (with respect to its active continuous variables) on
the final solution of the lower-level iterator (for which the top-level active variables are inactive). For example, in
an uncertainty analysis within a nested design under uncertainty algorithm, derivatives of the lower-level response
functions may be needed with respect to the design variables, which are active continuous variables at the top
level but are inactive within the uncertainty quantification. These instances are the reason for the creation and
inclusion of the DVV vector — to clearly indicate the variables whose partial derivatives are needed.

In all cases, if the DV'V is honored, then the correct derivative components are returned. In simple cases, such as
optimization and calibration studies that only specify design variables and for nondeterministic analyses that only
specify uncertain variables, derivative component subsets are not an issue and the exact content of the DVV may
be safely ignored.
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Inputs to Dakota

13.1 Overview of Inputs

Dakota supports a number of command-line arguments, as described in Section 2.4. Among these are specifica-
tions for the Dakota input file and, optionally, a restart file. The syntax of the Dakota input file is described in
detail in the Dakota Reference Manual [3], and the restart file is described in Chapter 19.

A Dakota input file may be prepared manually with a text editor such as Emacs, Vi, or WordPad, or it may be
defined with the JAGUAR Dakota graphical user interface. The JAGUAR Dakota GUI is built on the Java-based
Eclipse Framework [ 1] and presents the Dakota input specification options in synchronized text-editing and graph-
ical views. JAGUAR includes templates and wizards for helping create Dakota studies and can invoke Dakota to
run an analysis. The Dakota GUI for Linux, Windows, and Mac, is available for download from the Dakota web-
site http://dakota.sandia.gov/, along with licensing information, separate GUI documentation, and
installation tips.

13.1.1 Tabular Data Formats

The Dakota input file and/or command line may identify additional files for data import as described in Sec-
tion 13.2. Some of these files are in tabular data format.

Dakota versions 5.1+ (October 2011) and newer use two formats for tabular data file input and output. Tabular data
refer to numeric data in text form related to, e.g., tabular graphics data, least squares and Bayesian calibration data,
samples/points files for constructing surrogates, pre-run output, and post-run input. Both formats are written/read
with C++ stream operators/conversions, so most integer and floating point formats are acceptable for numeric
data. The formats are:

e Annotated Matrix (default for all I/O; specified via annotated): text file with one leading row of
comments/column labels and one leading column of evaluation/row IDs surrounding num_rows x num_cols
whitespace-separated numeric data, (newlines separating rows are not currently required, but may be in the
future). The numeric data in a row may correspond to variables, variables followed by responses, data point
for calibration, etc., depending on context.

e Free-form Matrix (optional; previously default for samples files and least squares data; specified via
freeform): text file with no leading row and no leading column. The num_rows x num_cols total numeric
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data entries may appear separated with any whitespace including arbitrary spaces, tabs, and newlines. In
this format, vectors may therefore appear as a single row or single column (or mixture; entries will populate
the vector in order).

Attention: Prior to October 2011, calibration and surrogate data files were free-form format. They now default
to annotated format, though freeform remains an option. For both formats, a warning will be generated if a
specific number of data are expected, but extra is found and an error generated when there is insufficient data.
Some TPLs like SCOLIB and JEGA manage their own file I/O and only support the free-form option.

13.2 Data Imports

The Dakota input file and/or command line may identify additional files used to import data into Dakota.

13.2.1 AMPL algebraic mappings: stub.nl, stub.row, and stub.col

As described in Section 11.2, an AMPL specification of algebraic input-to-output relationships may be imported
into Dakota and used to define or augment the mappings of a particular interface.

13.2.2 Genetic algorithm population import

Genetic algorithms (GAs) from the JEGA and SCOLIB packages support a population import feature using the
keywords initialization_type flat_file = STRING. This is useful for warm starting GAs from
available data or previous runs. Refer to the Method Specification chapter in the Dakota Reference Manual [3]
for additional information on this specification. The flat file must be in free-form format as described in Sec-
tion 13.1.1.

13.2.3 Calibration (least squares) data import

Deterministic least squares and Bayesian Calibration methods allow specification of experimental observations to
difference with responses in calculating a model misfit metric (such as a sum of squared residuals). The default
file format is annotated, but the freeform option is supported. The data file should contain one row per
experiment. The columns of the data file contain, in sequence

e configuration variables (optional): state variable values indicating the configuration at which this experi-
ment was conducted; length must agree with thee number of state variables active in the study.

e experimental observations (required): experimental data values to difference with model responses;
length number of responses.

e experimental standard deviations (optional): measurement errors (standard deviations) associated with
the data; length 1 (same value for each model response) or num_responses.

See 7.5 and the Dakota Reference Manual Responses section for further details.
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13.2.4 PCE coefficient import

Polynomial chaos expansion (PCE) methods compute coefficients for response expansions which employ a basis
of multivariate orthogonal polynomials. Normally, the polynomial_chaos method calculates these coeffi-
cients based either on a spectral projection or a linear regression (see Section 5.4). However, Dakota also supports
the option of importing a set of response PCE coefficients based on the specification
expansion_import_file = STRING. This is useful for evaluating moments analytically or computing
probabilities numerically from a known response expansion. Refer to the Method Specification chapter in the
Dakota Reference Manual [3] for additional information on this specification.

13.2.5 Surrogate construction from data files

Global data fit surrogates may be constructed from a variety of data sources. One of these sources is an auxiliary
data file, as specified by the keywords reuse_samples points_file = STRING. The file may be in an-
notated (default) or free-form format with columns corresponding to variables and responses. Refer to the Model
Specification chapter in the Dakota Reference Manual [3] for additional information on this specification.

13.2.6 Variables/responses import to post-run

The post-run mode (supported only for sampling, parameter study, and DACE methods) requires specification of
a file containing parameter and response data in annotated tabular format (see Section 13.1.1; free-form is not
supported). An evaluation ID column is followed by columns for variables, then those for responses, with an
ignored header row of labels and then one row per evaluation. Typically this file would be generated by executing
dakota —i dakota.in -pre_run ::variables.dat and then adding columns of response data to
variables.dat to make varsresponses.dat. The file is specified at the command line with:

dakota —-i dakota.in -post_run varsresponses.dat::
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Chapter 14

Output from Dakota

14.1 Overview of Output Formats

Given an emphasis on complex numerical simulation codes that run on massively parallel supercomputers, Dakota’s
output has been designed to provide a succinct, text-based reporting of the progress of the iterations and function
evaluations performed by an algorithm. In addition, Dakota provides a tabular output format that is useful for data
visualization with external tools and a basic graphical output capability that is useful as a monitoring tool. The
JAGUAR Dakota GUI is an emerging capability that will provide more advanced visualization facilities in time.

14.2 Standard Output

Dakota outputs basic information to “standard out” (i.e., the screen) for each function evaluation, consisting of
an evaluation number, parameter values, execution syntax, the active set vector, and the response data set. To
describe the standard output of Dakota, optimization of the “container” problem (see Chapter 21 for problem
formulation) is used as an example. The input file for this example is shown in Figure 14.1. In this example, there
is one equality constraint, and Dakota’s finite difference algorithm is used to provide central difference numerical
gradients to the NPSOL optimizer.
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# Dakota Input File: container_opt_npsol.in
strategy
single_method
graphics
tabular_graphics_data
tabular_graphics_file = ’container_opt_npsol.dat’

method
npsol_sqgp

variables
continuous_design = 2
descriptors’H’ '
initial_point 4.
lower_bounds O.

DI

5 4.5

0 0.0

interface

fork

analysis_driver
parameters_file = ’container.in’
results_file = ’container.out’
file_tag

’container’

responses
objective_functions = 1
nonlinear_equality_constraints = 1
numerical_gradients
method_source dakota
interval_type central
fd_gradient_step_size = 0.001
no_hessians

Figure 14.1: Dakota  input file for the  “container”
Dakota/examples/users/container_opt_npsol.in

test

problem

S€e
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A partial listing of the Dakota output for the container optimization example follows:

Running MPI executable in serial mode.

Dakota version 5.0 released 12/21/2009.

Subversion revision 5635M built Dec 18 2009 17:19:56.
Constructing Single Method Strategy...

Writing new restart file dakota.rst

methodName = npsol_sgp

gradientType = numerical

Numerical gradients using central differences

to be calculated by the dakota finite difference routine.
hessianType = none

>>>>> Running Single Method Strategy.

>>>>> Running npsol_sqgp iterator.

NPSOL --- Version 5.0-2 Sept 1995

Parameters for function evaluation 1:
4.5000000000e+00 H
4.5000000000e+00 D

container container.in.l container.out.l

Active response data for function evaluation 1:
Active set vector = { 1 1 }
1.0713145108e+02 obj_fn
8.0444076396e+00 nln_eq con_1

>>>>> Dakota finite difference gradient evaluation for x[1] + h:

Parameters for function evaluation 2:
4.5045000000e+00 H
4.5000000000e+00 D
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container container.in.2 container.out.2

Active response data for function evaluation 2:
Active set vector = { 1 1 }
1.0719761302e+02 obj_£fn
8.1159770472e+00 nln_eq con_1

>>>>> Dakota finite difference gradient evaluation for x[1] - h:

Parameters for function evaluation 3:
4.4955000000e+00 H
4.5000000000e+00 D

container container.in.3 container.out.3

Active response data for function evaluation 3:
Active set vector = { 1 1 }
1.0706528914e+02 obj_fn
7.9728382320e+00 nln_eqg_con_1

>>>>> Dakota finite difference gradient evaluation for x[2] + h:

Parameters for function evaluation 4:
4.5000000000e+00 H
4.5045000000e+00 D

container container.in.4 container.out.4
Active response data for function evaluation 4:
Active set vector = { 1 1 }

1.0727959301e+02 obj_fn
8.1876180243e+00 nln_eqg_con_1

>>>>> Dakota finite difference gradient evaluation for x[2] - h:

Parameters for function evaluation 5:
4.5000000000e+00 H
4.4955000000e+00 D

container container.in.5 container.out.5

Active response data for function evaluation 5:
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Active set vector = { 1 1 }
1.0698339109e+02 obj_fn
7.9013403937e+00 nln_eq con_1

>>>>> Total response returned to iterator:
Active set vector = { 3 } Deriv vars vector = { 1 2 }
.0713145108e+02 obj_fn

.0444076396e+00 nln_eq con_1
.2911324639e+01 ] obj_fn gradient
.1808625618e+01 ] nln_eqg _con_1 gradient

[ 1.4702653619%9e+01
[ 1.5904312809e+01

w w oo~ W

Majr Minr Step Fun Merit function Norm gZ Violtn nZz Penalty Conv
0 1 0.0E+00 1 9.90366719E+01 1.6E+00 8.0E+00 1 0.0E+00 F FF

<SNIP>

>>>>> Dakota finite difference gradient evaluation for x[2] - h:

Begin Function Evaluation 40

Parameters for function evaluation 40:
4.9873894231e+00 H
4.0230575428e+00 D

container container.in.40 container.out.40
Active response data for function evaluation 40:
Active set vector = { 1 1 }
9.8301287596e+01 obj_fn
-1.2698647501e-01 nln_eq con_1
>>>>> Total response returned to iterator:
Active set vector = { 3 3 } Deriv vars vector = { 1 2 }
9.8432498116e+01 obj_fn
-9.6918029158e-12 nln_eq con_1
[ 1.3157517860e+01 3.2590159623e+01 ] obj_fn gradient
[ 1.2737124497e+01 3.1548877601e+01 ] nln_eq con_1 gradient
7 1 1.0E+00 8 9.84324981E+01 4.8E-11 9.7E-12 1 1.7E402 T TT
Exit NPSOL - Optimal solution found.

Final nonlinear objective value = 98.43250

NPSOL exits with INFORM code = 0 (see "Interpretation of output" section in NPSOL manual)
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NOTE: see Fortran device 9 file (fort.9 or ftn09)
for complete NPSOL iteration history.
<<<<< Function evaluation summary: 40 total (40 new, 0 duplicate)
<<<<< Best parameters =
4.9873894231e+00 H
4.0270846274e+00 D
<<<<< Best objective function =
9.8432498116e+01
<<<<< Best constraint values =
-9.6918029158e-12
<<<<< Best data captured at function evaluation 36

<<<<< Iterator npsol_sgp completed.

<<<<< Single Method Strategy completed.

Dakota execution time in seconds:
Total CPU = 0.09 [parent = 0.082988, child = 0.007012]
Total wall clock = 0.34364

Exit graphics window to terminate Dakota.

The first block of lines provide a report on the Dakota configuration and settings. The lines that follow, down to the
line “Exit NPSOL - Optimal solution found”, contain information about the function evaluations
that have been requested by NPSOL and performed by Dakota. Evaluations 6 through 39 have been omitted from
the listing for brevity.

Following the line “Begin Function Evaluation 17, the initial values of the design variables, the syntax
of the function evaluation, and the resulting objective and constraint function values are listed. The values of the
design variables are labeled with the tags H and D, respectively, according to the descriptors to these variables
given in the input file, Figure 14.1. The values of the objective function and volume constraint are labeled with
the tags obj_fn and nln_eqg_con_1, respectively. Note that the initial design parameters are infeasible since
the equality constraint is violated (% 0). However, by the end of the run, the optimizer finds a design that is
both feasible and optimal for this example. Between the design variables and response values, the content of
the system call to the simulator is displayed as “ (container container.in.l container.out.l)”,
with container being the name of the simulator and container.in.1 and container.out.1 being the
names of the parameters and results files, respectively.

Just preceding the output of the objective and constraint function values is the line “Active set vector =
{1 1}”. The active set vector indicates the types of data that are required from the simulator for the objective and
constraint functions, and values of “1” indicate that the simulator must return values for these functions (gradient
and Hessian data are not required). For more information on the active set vector, see Section 10.7.

Since finite difference gradients have been specified, Dakota computes their values by making additional function
evaluation requests to the simulator at perturbed parameter values. Examples of the gradient-related function eval-
uations have been included in the sample output, beginning with the line that reads “>>>>> Dakota finite
difference evaluation for x[1] + h:”. The resulting finite difference gradients are listed after
function evaluation 5 beginning with the line “>>>>> Total response returned to iterator:”.
Here, another active set vector is displayed in the Dakota output file. The line “Active set vector = { 3

3 }” indicates that the total response resulting from the finite differencing contains function values and gradients.

The final lines of the Dakota output, beginning with the line “<<<<< Function evaluation summary:”,
summarize the results of the optimization study. The best values of the optimization parameters, objective func-
tion, and volume constraint are presented along with the function evaluation number where they occurred, total
function evaluation counts, and a timing summary. In the end, the objective function has been minimized and the
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$eval_id H D obj_fn nln_eq_con_1
1 4.5 4.5 107.1314511 8.04440764
2 5.801246882 3.596476363 94.33737399 -4.59103645
3 5.197920019 3.923577479 97.7797214 -0.6780884711
4 4.932877133 4.044776216 98.28930566 -0.1410680284
5 4.989328733 4.026133158 98.4270019 -0.005324671422
6 4.987494493 4.027041977 98.43249058 -7.307058453e-06
7 4.987391669 4.02708372 98.43249809 -2.032538049e-08
8 4.987389423 4.027084627 98.43249812 -9.691802916e-12

Figure 14.2: Dakota’s tabular output file showing the iteration history of the “container” optimization problem.

equality constraint has been satisfied (driven to zero within the constraint tolerance).

The Dakota results are intermixed with iteration information from the NPSOL library. The lines with the heading
“Majr Minr Step Fun Merit function Norm gZ Violtn nZ Penalty Conv’” come from For-
tran write statements within NPSOL. The output is mixed since both Dakota and NPSOL are writing to the same
standard output stream. The relative locations of these output contributions can vary depending on the specifics
of output buffering and flushing on a particular platform and depending on whether or not the standard output is
being redirected to a file. In some cases, output from the optimization library may appear on each iteration (as in
this example), and in other cases, it may appear at the end of the Dakota output. Finally, a more detailed summary
of the NPSOL iterations is written to the Fortran device 9 file (e.g., fort .9 or £tn09).

14.3 Tabular Output Data

Dakota has the capability to print the iteration history in tabular form to a file. The keyword
tabular_graphics_data needs to be included in the strategy specification (see Figure 14.1). The primary
intent of this capability is to facilitate the transfer of Dakota’s iteration history data to an external mathematical
analysis and/or graphics plotting package (e.g., MATLAB, TECplot, Excel, S-plus, Minitab). Any evaluations
from Dakota’s internal finite differencing are suppressed, which leads to better data visualizations. This sup-
pression of lower level data is consistent with the data that is sent to the graphics windows, as described in
Section 14.4. If this data suppression is undesirable, Section 19.2.3 describes an approach where every function
evaluation, even the ones from finite differencing, can be saved to a file in tabular format.

The default file name for the tabular output data is “dakota_-tabular.dat” and the output from the “con-
tainer” optimization problem is shown in Figure 14.2. This annotated tabular format (see Section 13.1.1) file
contains the complete history of data requests from NPSOL (8 requests map into a total of 40 function evalu-
ations when including the central finite differencing). The first column is the data request number, the second
and third columns are the design parameter values (labeled in the example as “H” and “D”), the fourth column
is the objective function (labeled “obj_fn”), and the fifth column is the nonlinear equality constraint (labeled
“nln_eqg._con_1”).

14.4 Graphics Output

Graphics capabilities are available for monitoring the progress of an iterative study. The graphics option is invoked
by adding the graphics flag in the strategy specification of the Dakota input file (see Figure 14.1). The graphics
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Figure 14.3: Dakota 2D graphics for “container” problem showing history of an objective function, an equality
constraint, and two variables.

¥ Options 4

Figure 14.4: Options for Dakota 2D graphics.

display the values of each response function (e.g., objective and constraint functions) and each parameter for the
function evaluations in the study. As for the tabular output described in Section 14.3, internal finite difference
evaluations are suppressed in order to omit this clutter from the graphics. Figure 14.3 shows the optimization
iteration history for the container example.

If Dakota is executed on a remote machine, the DISPLAY variable in the user’s UNIX environment [48] may need
to be set to the local machine in order to display the graphics window.

The scroll bars which are located on each graph below and to the right of each plot may be operated by dragging
on the bars or pressing the arrows, both of which result in expansion/contraction of the axis scale. Clicking on the
“Options” button results in the window shown in Figure 14.4, which allows the user to include min/max markers
on the vertical axis, vertical and horizontal axis labels, and a plot legend within the corresponding graphics plot.
In addition, the values of either or both axes may be plotted using a logarithmic scale (so long as all plot values
are greater than zero) and an encapsulated postscript (EPS) file, named dakota_graphic_i.eps where i is
the plot window number, can be created using the “Print” button.
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14.5 Error Messages Output

A variety of error messages are printed by Dakota in the event that an error is detected in the input specification.
Some of the more common input errors, and the associated error messages, are described below. See also the
Common Specification Mistakes section in the Dakota Reference Manual [3].

Incorrectly spelled specifications, such as  ‘numericl_gradients’’, will result in error messages of the
form:

Parser detected syntax error: unrecognized identifier ’'numericl_gradients’
within responses keyword.
Please refer to the dakota.input.txt distributed with this executable.

The input parser catches syntax errors, but not logic errors. The fact that certain input combinations are erroneous
must be detected after parsing, at object construction time. For example, if a no_gradients specification for
a response data set is combined with selection of a gradient-based optimization method, then this error must be
detected during set-up of the optimizer (see last line of listing):

Running MPI executable in serial mode.
Dakota version 4.0 released 05/12/2006.
Writing new restart file dakota.rst
Constructing Single Method Strategy...
methodName = npsol_sqgp

gradientType = none

hessianType = none

Error: gradient-based optimizers require a gradient specification.

Another common mistake involves a mismatch between the amount of data expected on a function evaluation and
the data returned by the user’s simulation code or driver. The available response data is specified in the responses
keyword block, and the subset of this data needed for a particular evaluation is managed by the active set vector.
For example, if Dakota expects function values and gradients to be returned (as indicated by an active set vector
containing 3’s), but the user’s simulation code only returns function values, then the following error message is
generated:

At EOF: insufficient data for functionGradient 1
Unfortunately, descriptive error messages are not available for all possible failure modes of Dakota. If you en-

counter core dumps, segmentation faults, or other failures, please request help using the support mechanisms
described on the Dakota website.

14.6 Variables Output from Pre-run

The pre-run mode (supported only for select methods) permits specification of an output file to which Dakota will
write parameter (variables) data in annotated format (see Section 13.1.1) with data columns corresponding to each
variable. This file can be generated with sampling, parameter study, and DACE methods by invoking

dakota -1 dakota.in -pre_run ::variables.dat

for example, to output the variables (samples) in an LHS study.
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Chapter 15

Advanced Strategies

15.1 Opverview

Dakota’s strategy capabilities were developed in order to provide a control layer for managing multiple iterators
and models. It was driven by the observed need for “meta-optimization” and other high level systems analysis pro-
cedures in real-world engineering design problems. This capability allows the use of existing iterative algorithm
and computational model software components as building blocks to accomplish more sophisticated studies, such
as hybrid minimization, multistart local minimization, or Pareto optimization. Other strategy-like capabilities
are enabled by the model recursion capabilities described in Chapter 9. When these model recursion specifica-
tions are sufficient to completely describe a multi-iterator, multi-model solution approach, then a separate strategy
specification is not used (see Chapter 16 for examples). In addition, some previous strategy capabilities (i.e., the
surrogate-based minimization approaches descibed in Chapter 8) have migrated into the method specification to
allow their componentization and reuse elsewhere. This trend will continue in future releases so that only the
most generic coordination approaches will remain.

15.2 Hybrid Minimization

In the hybrid minimization strategy (keyword: hybrid), a sequence of minimization methods are applied to find
an optimal design point. The goal of this strategy is to exploit the strengths of different minimization algorithms
through different stages of the minimization process. Global/local optimization hybrids (e.g., genetic algorithms
combined with nonlinear programming) are a common example in which the desire for a global optimum is
balanced with the need for efficient navigation to a local optimum. An important related feature is that the
sequence of minimization algorithms can employ models of varying fidelity. In the global/local case, for example,
it would often be advantageous to use a low-fidelity model in the global search phase, followed by use of a more
refined model in the local search phase.

The specification for hybrid minimization involves a list of method identifier strings, and each of the corresponding
method specifications has the responsibility for identifying the model specification (which may in turn identify
variables, interface, and responses specifications) that each method will use (see the Dakota Reference Manual [3]
and the example discussed below). Currently, only the sequential hybrid approach is available. The embedded
and collaborative approaches are not fully functional at this time.

In the sequential hybrid minimization approach, a sequence of minimization methods is invoked in the order
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specified in the Dakota input file. After each method completes execution, the best solution or solutions from
that method are used as the starting point(s) for the following method. The number of solutions transferred is
defined by how many that method can generate and how many the user specifies with the individual method
keyword final_solutions. For example, currently only a few of the global optimization methods such as
genetic algorithms (e.g. moga and coliny_ea) and sampling methods return multiple solutions. In this case,
the specified number of solutions from the previous method will be used to initialize the subsequent method. If
the subsequent method cannot accept multiple input points (currently only a few methods such as the genetic
algorithms in JEGA allow multiple input points), then multiple instances of the subsequent method are generated,
each one initialized by one of the optimal solutions from the previous method. For example, if LHS sampling
were run as the first method and the number of final solutions was 10 and the DOT conjugate gradient was the
second method, there would be 10 instances of dot_frcg started, each with a separate LHS sample solution
as its initial point. Method switching is governed by the separate convergence controls of each method; that is,
each method is allowed to run to its own internal definition of completion without interference. Individual method
completion may be determined by convergence criteria (e.g., convergence_tolerance) or iteration limits
(e.g.,max_iterations).

Figure 15.1 shows a Dakota input file that specifies a sequential hybrid optimization strategy to solve the “text-
book” optimization test problem. The textbook_hybrid_strat.infile providedin Dakota/examples/users
starts with a coliny_ea solution which feeds its best point into a coliny_pattern_search optimization
which feeds its best point into optpp-newton. While this approach is overkill for such a simple problem, it is
useful for demonstrating the coordination between multiple methods in the hybrid strategy.

The three optimization methods are identified using the method_11ist specification in the strategy section of the
input file. The identifier strings listed in the specification are ‘GA’ for genetic algorithm, ‘P S’ for pattern search,
and ‘NLP’ for nonlinear programming. Following the strategy keyword block are the three corresponding method
keyword blocks. Note that each method has a tag following the id_method keyword that corresponds to one of
the method names listed in the strategy keyword block. By following the identifier tags from method to model
and frommodel to variables, interface, and responses, it is easy to see the specification linkages for
this problem. The GA optimizer runs first and uses model ‘M1’ which includes variables ‘V1’, interface ‘I1’, and
responses ‘R1’°. Note that in the specification, final_solutions=1, so only one (the best) solution is returned
from the GA. However, it is possible to change this to final_solutions=5 and get five solutions passed from
the GA to the Pattern Search (for example). Once the GA is complete, the PS optimizer starts from the best GA
result and again uses model ‘M1°. Since both GA and PS are nongradient-based optimization methods, there is
no need for gradient or Hessian information in the ‘R1’ response keyword block. The NLP optimizer runs last,
using the best result from the PS method as its starting point. It uses model ‘M2’ which includes the same V1’
and ‘T1° keyword blocks, but uses the responses keyword block ‘R2’ since the full Newton optimizer used in this
example (optpp_newton) needs analytic gradient and Hessian data to perform its search.

15.3 Multistart LLocal Minimization

A simple, heuristic, global minimization technique is to use many local minimization runs, each of which is
started from a different initial point in the parameter space. This is known as multistart local minimization. This
is an attractive strategy in situations where multiple local optima are known or expected to exist in the parameter
space. However, there is no theoretical guarantee that the global optimum will be found. This approach com-
bines the efficiency of local minimization methods with a user-specified global stratification (using a specified
starting_points list, a number of specified random_starts, or both; see the Dakota Reference Man-
ual [3] for additional specification details). Since solutions for different starting points are independent, parallel
computing may be used to concurrently run the local minimizations.
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# Dakota Input File: textbook_hybrid_strat.in
strategy
graphics
hybrid sequential
method_list = ’"GA’ ’PS’ 'NLP’

method

id_method = "GA’

model_pointer = M1’

coliny_ea

final_solutions = 1

seed = 1234
population_size = 5
#verbose output

method

id_method = ’PS’

model_pointer = ‘M1’

coliny_pattern_search stochastic
seed = 1234
initial_delta = 0.1
threshold_delta = 1l.e-4
solution_accuracy = 1.e-10
exploratory_moves basic_pattern
#verbose output

method

id_method = /PS2’

model_pointer = ‘ML’

max_function_evaluations = 10

coliny_pattern_search stochastic
seed = 1234
initial_delta = 0.1
threshold_delta = l.e—4
solution_accuracy = 1.e-10
exploratory_moves basic_pattern
#verbose output

method
id_method = "NLP’
model_pointer = /M2’
optpp_newton
gradient_tolerance = l.e-12
convergence_tolerance = l.e-15
#verbose output

model
id_model = ’M1’
single
variables_pointer = /V1’
interface_pointer = /I1’
responses_pointer = ’R1’
model
id_model = "M2’
single
variables_pointer = /V1’
interface_pointer = /11’
responses_pointer = /R2’
variables
id_variables = 'V1’
continuous_design = 2
initial_point 0.6 0.7
upper_bounds 5.8 2.9
lower_bounds 0.5 -2.9
descriptors rx1’ rx27
interface
id_interface = ’I1’
direct
analysis_driver= 'text_book’
responses
id_responses = ’R1’

objective_functions = 1
no_gradients
no_hessians

responses
id_responses = ’R2’
objective_functions = 1

analytic_gradients
analytic_hessians

Figure 15.1: Dakota  input file

Dakota/examples/users/textbook_hybrid_strat.in

optimization

see
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# Dakota Input File: gsf_multistart_strat.in
strategy
multi_start graphics
method_pointer = ’'NLP’
random_starts = 3 seed = 123
starting_points = -.8 -.8
-.8 .8

.8
.8
0

O 0

method
id_method
dot_bfgs

"NLP’

variables
continuous_design = 2
lower_bounds -1.0 -1.0
upper_bounds 1.0 1.0
descriptors rx1’ rx2'

interface
fork #asynchronous
analysis_driver = ’"quasi_sine_fcn’

responses
objective_functions = 1
analytic_gradients
no_hessians

Figure 15.2: Dakota input file for a multistart local optimization strategy — see
Dakota/examples/users/gsf multistart_strat.in

An example input file for multistart local optimization on the “quasi_sine” test function (see quasi_sine_fcn.C
in Dakota_Source/test) is shown in Figure 15.2. The strategy keyword block in the input file contains the
keyword multi_start, along with the set of starting points (3 random and 5 listed) that will be used for the
optimization runs. The other keyword blocks in the input file are similar to what would be used in a single
optimization run.

The quasi_sine test function has multiple local minima, but there is an overall trend in the function that tends
toward the global minimum at (21,22) = (0.177,0.177). See [51] for more information on this test function.
Figure 15.3 shows the results summary for the eight local optimizations performed. From the five specified starting
points and the 3 random starting points (as identified by the x1, x2 headers), the eight local optima (as identified
by the x1*, x2* headers) are all different and only one of the local optimizations finds the global minimum.

15.4 Pareto Optimization

The Pareto optimization strategy (keyword: pareto_set)is one of three multiobjective optimization capabilities
discussed in Section 6.3.1. In the Pareto optimization strategy, multiple sets of multiobjective weightings are eval-
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<<<<< Results summary:
set_id x1 x2 x1* X2* obj_fn
1 -0.8 -0.8 -0.8543728666 —-0.8543728666 0.5584096919
2 -0.8 0.8 -0.9998398719 0.177092822 0.291406596
3 0.8 -0.8 0.177092822 -0.9998398719 0.291406596
4 0.8 0.8 0.1770928217 0.1770928217 0.0602471946
5 0 0 0.03572926375 0.03572926375 0.08730499239
6 -0.7767971993 0.01810943539 -0.7024118387 0.03572951143 0.3165522387
7 -0.3291571008 -0.7697378755 0.3167607374 -0.4009188363 0.2471403213
8 0.8704730469 0.7720679005 0.177092899 0.3167611757 0.08256082751

Figure 15.3: Dakota results summary for a multistart local optimization strategy.

uated. The user can specify these weighting sets in the strategy keyword block usingamulti_objective_weight_sets
list, a number of random_weight_sets, or both (see the Dakota Reference Manual [3] for additional specifi-
cation details).

Dakota performs one multiobjective optimization problem for each set of multiobjective weights. The collection
of computed optimal solutions form a Pareto set, which can be useful in making trade-off decisions in engineering
design. Since solutions for different multiobjective weights are independent, parallel computing may be used to
concurrently execute the multiobjective optimization problems.

Figure 15.5 shows the results summary for the Pareto-set optimization strategy. For the four multiobjective
weighting sets (as identified by the w1, w2, w3 headers), the local optima (as identified by the x1, x2 head-
ers) are all different and correspond to individual objective function values of (f1, f2, f3) = (0.0,0.5,0.5), (13.1,-
1.2,8.16), (532.,33.6,-2.9), and (0.125,0.0,0.0) (note: the composite objective function is tabulated under the
obj_fn header). The first three solutions reflect exclusive optimization of each of the individual objective func-
tions in turn, whereas the final solution reflects a balanced weighting and the lowest sum of the three objectives.
Plotting these (f1, fo, f3) triplets on a 3-dimensional plot results in a Pareto surface (not shown), which is useful
for visualizing the trade-offs in the competing objectives.
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# Dakota Input File:
strategy
pareto_set
graphics
opt_method_pointer = 'NLP’
multi_objective_weight_sets =
1. 0. 0.
0. 1. 0.
0. 0. 1.
.333 .333 .333

method
id_method =
dot_bfgs

"NLP’

model
single

variables
continuous_design = 2
initial_point 0
upper_bounds 5.
lower_bounds 0
descriptors ’

interface
fork #asynchronous
analysis_driver = ’text_book’
responses
objective_functions = 3
analytic_gradients
no_hessians

textbook_pareto_strat.

in

Figure 15.4: Dakota  input file  for

the

Pareto  optimization  strategy -  see

Dakota/examples/users/textbook_pareto_strat.in

<<<<< Results summary:
set_id wl w2 w3
1 1 0 0
2 0 1 0
3 0 0 1
4 0.333 0.333 0.333

x1 x2 obj_fn
0.9996554048 0.997046351 7.612301561le-11
0.5 2.9 -1.2
5.8 1.12747589%e-11 -2.9

0.5 0.5000000041 0.041625

Figure 15.5: Dakota results summary for the Pareto-set optimization strategy.
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Chapter 16

Advanced Model Recursions

The surrogate and nested model constructs admit a wide variety of multi-iterator, multi-model solution ap-
proaches. For example, optimization within optimization (for hierarchical multidisciplinary optimization), un-
certainty quantification within uncertainty quantification (for interval-valued or second-order probability), uncer-
tainty quantification within optimization (for optimization under uncertainty), and optimization within uncertainty
quantification (for uncertainty of optima) are all supported, with and without surrogate model indirection. Three
important examples are highlighted: second-order probability, optimization under uncertainty, and surrogate-
based uncertainty quantification.

16.1 Mixed Aleatory-Epistemic UQ

Mixed UQ approaches employ nested models to embed one uncertainty quantification (UQ) within another. The
outer level UQ is commonly linked to epistemic uncertainties (also known as reducible uncertainties) resulting
from a lack of knowledge, and the inner UQ is commonly linked to aleatory uncertainties (also known as irre-
ducible uncertainties) that are inherent in nature. The outer level generates sets of realizations of the epistemic
parameters, and each set of these epistemic parameters in used within a separate inner loop probabilistic analysis
over the aleatory random variables. In this manner, ensembles of aleatory statistics are generated, one set for each
realization of the epistemic parameters.

In Dakota, we support interval-valued probability (IVP), second-order probability (SOP), and Dempster-Shafer
theory of evidence (DSTE) approaches to mixed uncertainty. These three approaches differ by how they treat the
epistemic variables in the outer loop: they are treated as intervals in IVP, as subjective probability distributions in
SOP, and as belief structures in DSTE. This set of techniques provides a spectrum of assumed epistemic structure,
from strongest assumptions in SOP to weakest in IVP.

16.1.1 Interval-valued probability (IVP)

In IVP (also known as probability bounds analysis [36, 74, 7]), we employ an outer loop of interval estimation
in combination with an aleatory inner loop. In interval analysis, it is assumed that nothing is known about the
uncertain input variables except that they lie within certain intervals. The problem of uncertainty propagation then
becomes an interval analysis problem: given inputs that are defined within intervals, what is the corresponding
interval on the outputs?
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Starting from a specification of intervals and probability distributions on the inputs, the intervals may augment the
probability distributions, insert into the probability distributions, or some combination. We generate an ensemble
of cumulative distribution functions (CDF) or Complementary Cumulative Distribution Functions (CCDF), one
CDF/CCDF result for each aleatory analysis. Plotting an entire ensemble of CDFs or CCDFs in a “horsetail”
plot allows one to visualize the upper and lower bounds on the family of distributions (see Figure 16.1). Given
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Figure 16.1: Example CDF ensemble. Commonly referred to as a “horsetail” plot.

that the ensemble stems from multiple realizations of the epistemic uncertainties, the interpretation is that each
CDF/CCDF instance has no relative probability of occurrence, only that each instance is possible. For prescribed
response levels on the CDF/CCDF, an interval on the probability is computed based on the bounds of the ensemble
at that level, and vice versa for prescribed probability levels. This interval on a statistic is interpreted simply as a
possible range, where the statistic could take any of the possible values in the range.

A sample input file is shown in Figure 16.2, in which the outer epistemic level variables are defined as intervals.
Samples will be generated from these intervals to select means for X and Y that are employed in an inner level
reliability analysis of the cantilever problem (see Section 21.6). Figure 16.3 shows excerpts from the resulting
output. In this particular example, the outer loop generates 50 possible realizations of epistemic variables, which
are then sent to the inner loop to calculate statistics such as the mean weight, and cumulative distribution function
for the stress and displacement reliability indices. Thus, the outer loop has 50 possible values for the mean weight
but there is no distribution structure on these 50 samples. So, only the minimum and maximum value are reported.
Similarly, the minimum and maximum values of the CCDF for the stress and displacement reliability indices are
reported.

When performing an epistemic analysis, response levels and probability levels should only be defined in the inner
loop. For example, if one wants to generate an interval around possible CDFs or CCDFS, we suggest defining
a number of probability levels in the inner loop (0.1, 0.2, 0.3, etc). For each epistemic instance, these will be
calculated during the inner loop and reported back to the outer loop. In this way, there will be an ensemble
of CDF percentiles (for example) and one will have interval bounds for each of these percentile levels defined.
Finally, although the epistemic variables are often values defining distribution parameters for the inner loop, they
are not required to be: they can just be separate uncertain variables in the problem.

As compared to aleatory quantities of interest (e.g., mean, variance, probability) that must be integrated over a full
probability domain, we observe that the desired minima and maxima of the output ranges are local point solutions
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# Dakota Input File: cantilever_ug_sop_rel.in
strategy
single_method
method_pointer = 'EPISTEMIC’

method
id_method = ’EPISTEMIC’
model_pointer = ’EPIST_M’
sampling
samples = 50 seed = 12347

model

id_model = 'EPIST_M’

nested
variables_pointer = 'EPIST_V’
sub_method_pointer = ’ALEATORY’
responses_pointer = 'EPIST_R’
primary_variable_mapping = /X’ ryr
secondary_variable_mapping = ‘mean’ ’mean’

primary_response_mapping = 1. 0. 0. 0. 0. 0. 0. 0.
0.0.0.0.1.0.0.0.
0.

0. 0. 0.0.0.0. 1.
variables
id_variables = 'EPIST_V’
continuous_interval_ uncertain =2
num_intervals = 1 1
interval probs = 1.0 1.0
lower_bounds =  400. 800.
upper_bounds =  600. 1200.
descriptors 'X_mean’ ’Y_mean’
responses
id_responses = 'EPIST_R’
response_functions = 3

response_descriptors
no_gradients
no_hessians

‘mean_wt’ ‘ccdf_beta_s’ ’ccdf_beta_d’

method
id_method = ’ALEATORY’
model_pointer = ’ALEAT_M’

local_reliability
mpp_search no_approx
num_response_levels = 0 1
response_levels = 0.0 0.0
compute reliabilities
complementary distribution

1

model
id_model = ’ALEAT_M'
single
variables_pointer = /ALEAT_V'
interface_pointer = 'ALEAT_I’
responses_pointer = /ALEAT_R’

variables

id_variables = /ALEAT_V’

continuous_design = 2
initial_point 2.4522 3.8826
descriptors ‘w’ ‘t’

normal_uncertain = 4
means = 40000. 29.E+6 500. 1000.
std_deviations = 2000. 1.45E+6 100. 100.
descriptors = 'R’ 'E’' 'X' 'Y’

interface
id_interface = ’ALEAT_I’
direct
analysis_driver = ’cantilever’
deactivate evaluation_cache restart_file

responses
id_responses = ’ALEAT_R’
response_functions =
response_descriptors = ’‘weight’ ’stress’ ‘displ’
analytic_gradients
no_hessians

w

Figure 16.2: Dakota input file for the

interval-valued

Dakota/examples/users/cantilever_ug.sop_.rel.in

probability

example

N+
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Statistics based on 50 samples:

Min and Max values for each response function:

mean_wt: Min = 9.5209117200e+00 Max = 9.5209117200e+00
ccdf_beta_s: Min = 1.7627715524e+00 Max = 4.2949468386e+00
ccdf_beta_d: Min = 2.0125192955e+00 Max = 3.9385559339e+00

Figure 16.3: Interval-valued statistics for cantilever beam reliability indices.

in the epistemic parameter space, such that we may employ directed optimization techniques to compute these
extrema and potentially avoid the cost of sampling the full epistemic space.

In dakota/test, test input files such as dakota_ug_cantilever_ivp_exp.in and
dakota_ug_short_column_ivp_exp. in replace the outer loop sampling with the local and global interval
optimization methods described in Section 5.7.1. In these cases, we no longer generate horse tails and infer
intervals, but rather compute the desired intervals directly.

16.1.2 Second-order probability (SOP)

SOP is similar to IVP in its segregation of aleatory and epistemic uncertainties and its use of nested iteration.
However, rather than modeling epistemic uncertainty with a single interval per variable and computing interval-
valued statistics, we instead employ subjective probability distributions and compute epistemic statistics on the
aleatory statistics (for example, probabilities on probabilities — the source of the “second-order” terminology [56]).
Now the different hairs of the horsetail shown in Figure 16.1 have a relative probability of occurrence and stronger
inferences may be drawn. In particular, mean, 5" percentile, and 95" percentile probability values are a common
example. Second-order probability is sometimes referred to as probability of frequency (PoF) analysis, referring
to a probabilistic interpretation of the epistemic variables and a frequency interpretation of the aleatory variables.
The PoF terminology is used in a recent National Academy of Sciences report on the Quantification of Margins
and Uncertainties (QMU) [90].

Rather than employing interval estimation techniques at the outer loop in SOP, we can instead rely on the same
probabilistic methods for aleatory propagation employed for the inner loop. In certain special cases, expected
values of expected values can be computed in closed form (selected statistics for combined variable stochastic
expansions, refer to the Dakota Theory Manual [4]), without need for a separate outer loop method.

The previous example in Figure 16.2 can be modified to define the epistemic outer loop using uniform variables
instead of interval variables (annotated test #1 in dakota/test/dakota_ug._cantilever_sop_rel.in).
The process of generating the epistemic values is essentially the same in both cases; however, the interpretation
of results is quite different. In IVP, each “hair” or individual CDF in the horsetail plot in Figure 16.1 would be in-
terpreted as a possible realization of aleatory uncertainty conditional on a particular epistemic sample realization.
The ensemble then indicates the influence of the epistemic variables (e.g. by how widespread the ensemble is).
However, if the outer loop variables are defined to be uniformly distributed in SOP, then the outer loop results will
be reported as statistics (such as mean and standard deviation) and not merely intervals. It is important to empha-
size that these outer level output statistics are only meaningful to the extent that the outer level input probability
specifications are meaningful (i.e., to the extent that the epistemic variables are known to be uniform).

In dakota/test, additional test input files such as dakota_ug_cantilever_sop_exp.in and
dakota_ug_short_column_sop_exp.in explore other outer/inner loop probabilistic analysis combinations,
particulary using stochastic expansion methods .
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16.1.3 Dempster-Shafer Theory of Evidence

In IVP, we estimate a single epistemic output interval for each aleatory statistic. This same nested analysis
procedure may be employed within the cell computations of a DSTE approach. Instead of a single interval, we
now compute multiple output intervals, one for each combination of the input basic probability assignments, in
order to define epistemic belief and plausibility functions on the aleatory statistics computed in the inner loop.
While this can significantly increase the computational requirements, belief and plausibility functions provide a
more finely resolved epistemic characterization than a basic output interval.

The single-level DSTE approach for propagating epistemic uncertainties is described in Section 5.7.2 and in
the Dakota Theory Manual [4]. Examples of nested DSTE for propagating mixed uncertainties can be seen in
dakota/test in the input file dakota_ug_-ishigami_dste_exp.in.

16.2 Optimization Under Uncertainty (OUU)

Optimization under uncertainty (OUU) approaches incorporate an uncertainty quantification method within the
optimization process. This is often needed in engineering design problems when one must include the effect of
input parameter uncertainties on the response functions of interest. A typical engineering example of OUU would
minimize the probability of failure of a structure for a set of applied loads, where there is uncertainty in the loads
and/or material properties of the structural components.

In OUU, a nondeterministic method is used to evaluate the effect of uncertain variable distributions on response
functions of interest (refer to Chapter 5 for additional information on nondeterministic analysis). Statistics on
these response functions are then included in the objective and constraint functions of an optimization process.
Different UQ methods can have very different features from an optimization perspective, leading to the tailoring
of optimization under uncertainty approaches to particular underlying UQ methodologies.

If the UQ method is sampling based, then three approaches are currently supported: nested OUU, surrogate-based
OUU, and trust-region surrogate-based OUU. Additional details and computational results are provided in [28].

Another class of OUU algorithms is called reliability-based design optimization (RBDO). RBDO methods are
used to perform design optimization accounting for reliability metrics. The reliability analysis capabilities de-
scribed in Section 5.3 provide a rich foundation for exploring a variety of RBDO formulations. [25] investigated
bi-level, fully-analytic bi-level, and first-order sequential RBDO approaches employing underlying first-order
reliability assessments. [26] investigated fully-analytic bi-level and second-order sequential RBDO approaches
employing underlying second-order reliability assessments.

When using stochastic expansions for UQ, analytic moments and analytic design sensitivities can be exploited
as described in [34]. Several approaches for obtaining design sensitivities of statistical metrics are discussed in
Section 16.2.5.

Finally, when employing epistemic methods for UQ, the set of statistics available for use within optimization are
interval-based. Robustness metrics typically involve the width of the intervals, and reliability metrics typically
involve the worst case upper or lower bound of the interval.

Each of these OUU methods is overviewed in the following sections.

16.2.1 Nested OUU

In the case of a nested approach, the optimization loop is the outer loop which seeks to optimize a nondeterministic
quantity (e.g., minimize probability of failure). The uncertainty quantification (UQ) inner loop evaluates this
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Figure 16.4: Formulation 1: Nested OUU.

nondeterministic quantity (e.g., computes the probability of failure) for each optimization function evaluation.
Figure 16.4 depicts the nested OUU iteration where d are the design variables, u are the uncertain variables
characterized by probability distributions, r,,(d, u) are the response functions from the simulation, and s,,(d) are
the statistics generated from the uncertainty quantification on these response functions.

Figure 16.5 shows a Dakota input file for a nested OUU example problem that is based on the textbook test
problem. In this example, the objective function contains two probability of failure estimates, and an inequality
constraint contains another probability of failure estimate. For this example, failure is defined to occur when one
of the textbook response functions exceeds its threshold value. The strategy keyword block at the top of the input
file identifies this as an OUU problem. The strategy keyword block is followed by the optimization specification,
consisting of the optimization method, the continuous design variables, and the response quantities that will be
used by the optimizer. The mapping matrices used for incorporating UQ statistics into the optimization response
data are described in the Dakota Reference Manual [3]. The uncertainty quantification specification includes the
UQ method, the uncertain variable probability distributions, the interface to the simulation code, and the UQ
response attributes. As with other complex Dakota input files, the identification tags given in each keyword block
can be used to follow the relationships among the different keyword blocks.

Latin hypercube sampling is used as the UQ method in this example problem. Thus, each evaluation of the
response functions by the optimizer entails 50 Latin hypercube samples. In general, nested OUU studies can
easily generate several thousand function evaluations and gradient-based optimizers may not perform well due
to noisy or insensitive statistics resulting from under-resolved sampling. These observations motivate the use of
surrogate-based approaches to OUU.

Other nested OUU examples in the dakota/test directory include dakota_ouul_tbch. in, which adds an
additional interface for including deterministic data in the textbook OUU problem, and
dakota_ouul_cantilever. in, which solves the cantilever OUU problem (see Section 21.6) with a nested
approach. For each of these files, the “1” identifies formulation 1, which is short-hand for the nested approach.

16.2.2 Surrogate-Based OUU (SBOUU)

Surrogate-based optimization under uncertainty strategies can be effective in reducing the expense of OUU stud-
ies. Possible formulations include use of a surrogate model at the optimization level, at the uncertainty quantifica-
tion level, or at both levels. These surrogate models encompass both data fit surrogates (at the optimization or UQ
level) and model hierarchy surrogates (at the UQ level only). Figure 16.6 depicts the different surrogate-based for-
mulations where ¥, and §,, are approximate response functions and approximate response statistics, respectively,
generated from the surrogate models.

SBOUU examples in the dakota/test directory include dakota_sbouu2_tbch. in,
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# Dakota Input File: textbook_opt_ouul.in
strategy
single_method
method_pointer = ’OPTIM’

method
id_method = ’OPTIM'
model_pointer = ’OPTIM_M’
npsol_sqp
convergence_tolerance = 1.e-8

model

id_model = /OPTIM_M’

nested
variables_pointer = /OPTIM_V’
sub_method_pointer = 'UQ’
responses_pointer = ‘OPTIM R’
primary_response_mapping 0. 0.1.0.0.1.0.0. 0.
secondary_response_mapping = 0. 0. 0. 0. 0. 0. 0. 0. 1.

variables
id_variables = 'OPTIM_V’
continuous_design = 2
initial_point 1.8 1.0
upper_bounds 2.164 4.0
lower_bounds 1.5 0.0
descriptors rd1’ rd2’
responses
id_responses = ’OPTIM_R’
objective_functions = 1
nonlinear_inequality_constraints = 1
nonlinear_inequality_upper_bounds = .1

numerical_gradients
method_source dakota
interval_type central
fd_gradient_step_size = 1.e-1
no_hessians

method
id_method = "UQ’
model_pointer = ’UQ_M’
sampling
samples = 50 seed = 1 sample_type lhs
response_levels = 3.6e+ll 1.2e+05 3.5e+05
complementary distribution

model
id_model = ’UQ_M’
single
variables_pointer = ’UQ_V’
interface_pointer = /UQ_I’
responses_pointer = /UQ_R’

variables
id_variables = 'UQ_V’
continuous_design = 2
normal_uncertain = 2
means = 248.89 593.33
std_deviations = 12.4 29.7
descriptors = ’nuvl’ ‘nuv2’
uniform_uncertain = 2
lower_bounds = 199.3 474.63
upper_bounds = 298.5 712.
descriptors = ‘uuvl’ ‘uuv2’
weibull_uncertain = 2
alphas = 12. 30.
betas = 250. 590.
descriptors = ‘wuvl’ ‘fwuv2’

interface
id_interface = /UQ_I’
fork asynch evaluation_concurrency = 5
analysis_driver = ’text_book_ouu’

responses
id_responses = 'UQ_R’
response_functions 3
no_gradients
no_hessians

Figure 16.5: Dakota input file for the
Dakota/examples/users/textbook_opt_ouul.in

nested

ouu

example

see
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Figure 16.6: Formulations 2, 3, and 4 for Surrogate-based OUU.

dakota_sbouu3_tbch.in, and dakota_sbouud_tbch. in, which solve the textbook OUU problem, and
dakota_sbouu2_cantilever.in, dakota_sbouu3_cantilever.in, and
dakota_sbouu4d_cantilever. in, which solve the cantilever OUU problem (see Section 21.6). For each
of these files, the “2,” “3,” and “4” identify formulations 2, 3, and 4, which are short-hand for the “layered
containing nested,” “nested containing layered,” and “layered containing nested containing layered” surrogate-
based formulations, respectively. In general, the use of surrogates greatly reduces the computational expense of
these OUU study. However, without restricting and verifying the steps in the approximate optimization cycles,
weaknesses in the data fits can be exploited and poor solutions may be obtained. The need to maintain accuracy
of results leads to the use of trust-region surrogate-based approaches.

16.2.3 Trust-Region Surrogate-Based OUU (TR-SBOUU)

The TR-SBOUU approach applies the trust region logic of deterministic SBO (see Section 8.2) to SBOUU. Trust-
region verifications are applicable when surrogates are used at the optimization level, i.e., formulations 2 and 4.
As a result of periodic verifications and surrogate rebuilds, these techniques are more expensive than SBOUU;
however they are more reliable in that they maintain the accuracy of results. Relative to nested OUU (formulation
1), TR-SBOUU tends to be less expensive and less sensitive to initial seed and starting point.

TR-SBOUU examples in the dakota/test directory include dakota_trsbouu2_tbch. in and
dakota_trsbouud_tbch. in, which solve the textbook OUU problem, and
dakota_trsbouu2_cantilever.in and dakota_trsbouud4_cantilever.in, which solve the can-
tilever OUU problem (see Section 21.6).

Computational results for several example problems are available in [28].

16.2.4 RBDO

Bi-level and sequential approaches to reliability-based design optimization (RBDO) and their associated sensi-
tivity analysis requirements are described in the Optimization Under Uncertainty chapter of the Dakota Theory
Manual [4].
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A number of bi-level RBDO examples are provided in dakota/test. The dakota_rbdo_cantilever.in,
dakota_rbdo_short_column.in, and dakota_rbdo_steel_column. in input files solve the cantilever

(see Section 21.6), short column (see Section 21.9.4), and steel column (see Section 21.9.5) OUU problems using a
bi-level RBDO approach employing numerical design gradients. The dakota_rbdo_cantilever_analytic.in
and dakota_rbdo_short_column_analytic.in input files solve the cantilever and short column OUU
problems using a bi-level RBDO approach with analytic design gradients and first-order limit state approxima-
tions. The dakota_rbdo_cantilever_analytic2.in,dakota_rbdo_short_column_analytic2.in,
and dakota_rbdo_steel_column_analytic?2. in input files also employ analytic design gradients, but are
extended to employ second-order limit state approximations and integrations.

Sequential RBDO examples are also provided in dakota/test. The dakota_rbdo_cantilever_trsb.in
and dakota_rbdo_short_column_trsb. in input files solve the cantilever and short column OUU problems
using a first-order sequential RBDO approach with analytic design gradients and first-order limit state approxi-
mations. The dakota_rbdo_cantilever_trsb2.in, dakota_rbdo_short_column_trsb2.in, and
dakota_rbdo_steel_column_trsb2.in input files utilize second-order sequential RBDO approaches that
employ second-order limit state approximations and integrations (from analytic limit state Hessians with respect
to the uncertain variables) and quasi-Newton approximations to the reliability metric Hessians with respect to
design variables.

16.2.5 Stochastic Expansion-Based Design Optimization

For stochastic expansion-based approaches to optimization under uncertainty, bi-level, sequential, and multifi-
delity approaches and their associated sensitivity analysis requirements are described in the Optimization Under
Uncertainty chapter of the Dakota Theory Manual [4].

In dakota/test, the dakota_pcbdo_cantilever.in, dakota_pcbdo_rosenbrock.in,

dakota_pcbdo_short_column.in, and dakota_pcbdo_steel_column.in input files solve cantilever
(see Section 21.6), Rosenbrock, short column (see Section 21.9.4), and steel column (see Section 21.9.5) OUU
problems using a bi-level polynomial chaos-based approach, where the statistical design metrics are reliability
indices based on moment projection (see Mean Value section in Reliability Methods Chapter of Dakota Theory
Manual [4]). The test matrix in the former three input files evaluate design gradients of these reliability indices
using several different approaches: analytic design gradients based on a PCE formed over only over the random
variables, analytic design gradients based on a PCE formed over all variables, numerical design gradients based
on a PCE formed only over the random variables, and numerical design gradients based on a PCE formed over all
variables. In the cases where the expansion is formed over all variables, only a single PCE construction is required
for the complete PCBDO process, whereas the expansions only over the random variables must be recomputed
for each change in design variables. Sensitivities for “augmented” design variables (which are separate from
and augment the random variables) may be handled using either analytic approach; however, sensitivities for
“inserted” design variables (which define distribution parameters for the random variables) must be computed
using 492 (refer to Stochastic Sensitivity Analysis section in Optimization Under Uncertainty chapter of Dakota

dx ds
Theory Manual [4]). Additional test input files include:

e dakota_scbdo_cantilever.in, dakota_scbdo_rosenbrock.in,
dakota_scbdo_short_column.in, and dakota_scbdo_steel_column. in input files solve can-
tilever, Rosenbrock, short column, and steel column OUU problems using a bi-level stochastic collocation-
based approach.

e dakota_pcbdo_cantilever_trsb.in, dakota_pcbdo_rosenbrock_trsb.in,
dakota_pcbdo_short_column_trsb. in, dakota_pcbdo_steel_column_trsb.in,
dakota_scbdo_cantilever_trsb.in, dakota_scbdo_rosenbrock_trsb.in,
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dakota_scbdo_short_column_trsb.in, and dakota_scbdo_steel_column_trsb.in input
files solve cantilever, Rosenbrock, short column, and steel column OUU problems using sequential polyno-
mial chaos-based and stochastic collocation-based approaches.

e dakota_pcbdo_cantilever mf.in, dakota_pcbdo_rosenbrock mf.in,
dakota_pcbdo_short_column.mf.in, dakota_scbdo_cantilever mf.in,
dakota_scbdo_rosenbrockmf.in,and dakota_scbdo_short_column_mf.in inputfiles solve
cantilever, Rosenbrock, and short column OUU problems using multifidelity polynomial chaos-based and
stochastic collocation-based approaches.

16.2.6 Epistemic OUU

An emerging capability is optimization under epistemic uncertainty. As described in the Nested Model section of
the Reference Manual [3], epistemic and mixed aleatory/epistemic uncertainty quantification methods generate
lower and upper interval bounds for all requested response, probability, reliability, and generalized reliability level
mappings. Design for robustness in the presence of epistemic uncertainty could simply involve minimizing the
range of these intervals (subtracting lower from upper using the nested model response mappings), and design for
reliability in the presence of epistemic uncertainty could involve controlling the worst case upper or lower bound
of the interval.

We now have the capability to perform epistemic analysis by using interval optimization on the “outer loop” to

calculate bounding statistics of the aleatory uncertainty on the “inner loop.” Preliminary studies [33] have shown

this approach is more efficient and accurate than nested sampling (which was described in Section 16.1.2). This

approach uses an efficient global optimization method for the outer loop and stochastic expansion methods (e.g.
polynomial chaos or stochastic collocation on the inner loop). The interval optimization is described in Sec-

tion 5.7.1. Example input files demonstrating the use of interval estimation for epistemic analysis, specifically in
epistemic-aleatory nesting, are: dakota_ug_cantilever_sop_exp.in,and dakota_short_column_sop_exp.in.
Both files are in Dakota/test.

16.3 Surrogate-Based Uncertainty Quantification

Many uncertainty quantification (UQ) methods are computationally costly. For example, sampling often requires
many function evaluations to obtain accurate estimates of moments or percentile values of an output distribution.
One approach to overcome the computational cost of sampling is to evaluate the true function (e.g. run the analysis
driver) on a fixed, small set of samples, use these sample evaluations to create a response surface approximation
(e.g. a surrogate model or meta-model) of the underlying “true” function, then perform random sampling (using
thousands or millions of samples) on the approximation to obtain estimates of the mean, variance, and percentiles
of the response.

This approach, called “surrogate-based uncertainty quantification” is easy to do in Dakota, and one can set up
input files to compare the results using no approximation (e.g. determine the mean, variance, and percentiles
of the output directly based on the initial sample values) with the results obtained by sampling a variety of
surrogate approximations. Example input files of a standard UQ analysis based on sampling alone vs. sam-
pling a surrogate are shown in the textbook_ug_sampling.in and textbook_ug_surrogate.ininthe
Dakota/examples/users directory.

Note that one must exercise some caution when using surrogate-based methods for uncertainty quantification.
In general, there is not a single, straightforward approach to incorporate the error of the surrogate fit into the
uncertainty estimates of the output produced by sampling the surrogate. Two references which discuss some of the
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related issues are [52] and [1 1 2]. The first reference shows that statistics of a response based on a surrogate model
were less accurate, and sometimes biased, for surrogates constructed on very small sample sizes. In many cases,
however, [52] shows that surrogate-based UQ performs well and sometimes generates more accurate estimates
of statistical quantities on the output. The second reference goes into more detail about the interaction between
sample type and response surface type (e.g., are some response surfaces more accurate when constructed on a
particular sample type such as LHS vs. an orthogonal array?) In general, there is not a strong dependence of the
surrogate performance with respect to sample type, but some sample types perform better with respect to some
metrics and not others (for example, a Hammersley sample may do well at lowering root mean square error of the
surrogate fit but perform poorly at lowering the maximum absolute deviation of the error). Much of this work is
empirical and application dependent. If you choose to use surrogates in uncertainty quantification, we strongly
recommend trying a variety of surrogates and examining diagnostic goodness-of-fit metrics.
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Chapter 17

Advanced Simulation Code Interfaces

17.1 Building an Interface to a Engineering Simulation Code

To interface an engineering simulation package to Dakota using one of the black-box interfaces (system call or
fork), pre- and post-processing functionality typically needs to be supplied (or developed) in order to transfer
the parameters from Dakota to the simulator input file and to extract the response values of interest from the
simulator’s output file for return to Dakota (see Figures 1.1 and 11.1). This is often managed through the use of
scripting languages, such as C-shell [5], Bourne shell [10], Perl [125], or Python [84]. While these are common
and convenient choices for simulation drivers/filters, it is important to recognize that any executable file can be
used. If the user prefers, the desired pre- and post-processing functionality may also be compiled or interpreted
from any number of programming languages (C, C++, F77, F95, JAVA, Basic, etc.).

In the Dakota/examples/script_-interfaces/generic directory, a simple example uses the Rosen-
brock test function as a mock engineering simulation code. Several scripts have been included to demonstrate
ways to accomplish the pre- and post-processing needs. Actual simulation codes will, of course, have different
pre- and post-processing requirements, and as such, this example serves only to demonstrate the issues associated
with interfacing a simulator. Modifications will almost surely be required for new applications.

17.1.1 Generic Script Interface Files

The Dakota/examples/script_interfaces/generic directory contains four important files: dakota_rosenbrock.
(the Dakota input file), simulator_script (the simulation driver script), dprepro (a pre-processing utility),

and

templatedir/ros.template (atemplate simulation input file).

The file dakota_rosenbrock. in specifies the study that Dakota will perform and, in the interface section,
describes the components to be used in performing function evaluations. In particular, it identifies
simulator_script asits analysis._driver, as shown in Figure 17.1.

The simulator_script listed in Figure 17.2 is a short driver shell script that Dakota executes to perform
each function evaluation. The names of the parameters and results files are passed to the script on its command
line; they are referenced in the script by Sargv[1] and Sargv[2], respectively. The simulator_script
is divided into three parts: pre-processing, analysis, and post-processing.

In the pre-processing portion, the simulator_script uses dprepro, a parsing utility, to extract the current
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# DAKOTA INPUT FILE - dakota_rosenbrock.in
# This sample Dakota input file optimizes the Rosenbrock function.
# See p. 95 in Practical Optimization by Gill, Murray, and Wright.

method,

npsol_sqgp
# if NPSOL is not available, comment the above and try the following instead:
## conmin_frcg

variables,
continuous_design = 2
cdv_initial_point -1.0
cdv_lower_bounds -2.0
cdv_upper_bounds 2.0
rx1

1.0

-2.0

2.0

cdv_descriptor 'x2

4 ’

interface,
system

# asynchronous

analysis_driver = ’simulator_script’

parameters_file = ’'params.in’

results_file = 'results.out’

work_directory directory_tag

template_directory = 'templatedir’
# uncomment to leave params.in and results.out files in work_dir subdirectories
# named ’'workdir’ file_save directory_save

aprepro
# when using conmin_frcg (above) with analytic_gradients (below),
# need to turn off the active set vector as rosenbrock_bb does not parse it.
#4 deactivate active_set_vector

responses,
num_objective_functions
numerical_gradients
fd_gradient_step_size = .000001
# to instead use analytic gradients returned by the simulator comment the
# preceding two lines and uncomment the following:
## analytic_gradients

Il
-

no_hessians

Figure 17.1: The dakota_rosenbrock. in input file.
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#!/bin/sh
# Sample simulator to Dakota system call script
# See Advanced Simulation Code Interfaces chapter in Users Manual

# $1 is params.in FROM Dakota
# $2 is results.out returned to Dakota

# ,,,,,,,,,,,,,,

# PRE-PROCESSING

# ______________

# Incorporate the parameters from DAKOTA into the template, writing ros.in

# Use the following line if SNL’s APREPRO utility is used instead of DPrePro.
# ../aprepro -c '+’ -gq —-nowarning ros.template ros.in

dprepro $1 ros.template ros.in

# extract function value from the simulation output

grep ’'Function value’ ros.out | cut -c 18- > results.tmp

# extract gradients from the simulation output (in this case will be ignored
# by DAKOTA if not needed)

grep -1 ’'Function g’ ros.out | cut -c 21- >> results.tmp

mv results.tmp $2

Figure 17.2: The simulator_script sample driver script.
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Usage:
dprepro [options] parameters_file template_input_file new_input_file

Options:
—-—help
print brief help message

—-man
print full manual page and exit

—-left-delimiter=string, --right-delimiter=string
override the default curly brace delimiters { and }; these may need
to be quoted or escaped on the command line, e.g., require escaping
with backslash: ' $ # require quotes or escaping: \ ' () |

——output-format=string
use the specified C-style format specification string for numeric
output in all substitutions; also may need to be quoted or escaped

Figure 17.3: Partial listing of the dprepro script.

variable values from a parameters file (Sargv[1]) and combine them with the simulator template input file
(ros.template) to create a new input file (ros. in) for the simulator. Internal to Sandia, the APREPRO
utility is often used for this purpose. For external sites where APREPRO is not available, the DPrePro utility
mentioned above is an alternative with many of the capabilities of APREPRO that is specifically tailored for use
with Dakota and is distributed with it (in
Dakota/examples/script_interfaces/generic/dprepro, or Dakota/bin in a binary distribu-
tion). Additionally, the BPREPRO utility is another alternative to APREPRO (see [127]), and at Lockheed Martin
sites, the JPrePost utility is available as a JAVA pre- and post-processor [37]. The dprepro script (usage shown
in Figure 17.3) will be used here for simplicity of discussion. It can use either Dakota’s aprepro parameters
file format (see Section 10.6.2) or Dakota’s standard format (see Section 10.6.1), so either option may be selected
in the interface section of the Dakota input file. The ros.template file listed in Figure 17.4 is a template
simulation input file which contains targets for the incoming variable values, identified by the strings “{x1}” and
“{x2}”. These identifiers match the variable descriptors specified in dakota_rosenbrock. in. The template
input file is contrived as Rosenbrock has nothing to do with finite element analysis; it only mimics a finite element
code to demonstrate the simulator template process. The dprepro script will search the simulator template input
file for fields marked with curly brackets and then create a new file (ros. in) by replacing these targets with the
corresponding numerical values for the variables. As noted in the usage information for dprepro and shown in
simulator_script, the names for the Dakota parameters file (Sargv [1]), template file (ros.template),
and generated input file (ros . in) must be specified in the dprepro command line arguments.

The second part of the script executes the rosenbrock_bb simulator. The input and output file names, ros.in
and ros.out, respectively, are hard-coded into the FORTRAN 77 program rosenbrock_bb.f. When the
rosenbrock_bb simulator is executed, the values for x1 and x2 are read in from ros. in, the Rosenbrock
function is evaluated, and the function value is written out to ros . out.

The third part performs the post-processing and writes the response results to a file for Dakota to read. Using
the UNIX “grep” utility, the particular response values of interest are extracted from the raw simulator output
and saved to a temporary file (results.tmp). When complete, this file is renamed $argv[2], which in
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Title of Model: Rosenbrock black box

KA AR A AR AR A AR A A A A A A A AR A AR A A A A A A A AR A AR AR A AR A A A A A A A AR AR A AR A I A A A AR AR A AR A AR Ak K,k

* Description: This is an input file to the Rosenbrock black box
* Fortran simulator. This simulator is structured so
* as to resemble the input/output from an engineering

* % o

*

simulation cod